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Phones 
(smart/non-smart) 
on silence plz, 
Thanks 
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Recap of D Flip-flop
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Recap of D Flip-flop
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Recap of D Flip-flop
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Recap of D Flip-flop
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Recap of D Flip-flop
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Delay to make sure all is well
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More Delay
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All in One
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World of State 
machines (FSMs) 
Moore and Mealy 
Machines
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Moore vs 
Mealy 
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Moore machine: Output 
depends on the current state 

Mealy machine: Output 
depends on the current state 
and inputs 



Odd Parity Checker
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Even
[0]

Odd
[1]

0

1 1

Even
[0]

Odd
[1]

0

1 1

0/0

1/1 1/0

0/1

MealyMoore

• Serial input string
• OUT=1 if odd # of 1s in input
• OUT=0 if even # of 1s in input

• Let’s do this for Moore and Mealy



State Transitions
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Present         Input           Next       Present

State State       Output

Even 0 Even 0
Even 1 Odd 0
Odd 0 Odd 1
Odd 1            Even 1 Present         Input           Next       Present

State State       Output

Even 0 Even 0
Even 1 Odd 1
Odd 0 Odd 1
Odd 1            Even 0

Moore

Mealy

Output changes only when the state changes
Appears after the state transition takes place
outputs change at clock edge
Even = 0 
Odd = 1

Output changes when the state and input changes
Appears before the state transition is completed 
React faster to inputs — don't wait for clock



Try on your own
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01/10 detector: Moore Machine
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D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next current

reset input state state output

1 – – A 0

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B D 0

0 0 C E 0

0 1 C C 0

0 0 D E 1

0 1 D C 1

0 0 E B 1

0 1 E D 1



01/10 detector: Mealy Machine
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current next current

reset input state state output
B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

1 – – A 0

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B C 1

0 0 C B 1

0 1 C C 0



Architecture-101
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Next Few Lectures
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HOW CAN A 
PROGRAMME
R INTERACT 
WITH THE 

PROCESSOR? 

THE 
LANGUAGE 

OF 
COMPUTER: 

INSTRUCTION
S 

INSTRUCTION
S HAVE A 

VOCABULARY 
CALLED 

INSTRUCTION 
SET 

DRIVEN BY 
INSTRUCTION 

SET 
ARCHITECTUR

E (ISA) 

ISA: X86, 
ARM, RISC-V, 

MIPS



Why MIPS?

Simple yet expressive 

Basic principles are similar if not the same. e.g., 
ARM ISA

Still in use today: embedded devices, routers, 
modems etc. 
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ISA: Abstraction layer

Interface between hardware and software

hides complexity from the software through a 
set of simple instructions
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Abstraction Example: 
101
a = b + c ; // C code 

compiler

add $1, $2, $3 // assembly language as per the ISA 

assembler

010101010101010 // machine language, 0s and 1s 

Computer Architecture 22



Abstraction Example: 101

Operands can be in registers or in memory
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C
o

re

operands

Registers



A bit detailed 
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Costly DRAM 
accesses

Costly: 100 timesC
o

re

South pole 

32-bit Address

Data

GBs DRAM

Registers

Registers are limited



Instructions

Programmers’ order/command to the processor 
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Why Instructions?
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Programmer knows what it can/cannot
Processor knows what it should

Power of abstraction:
World with no instructions: 
Programmers – communicate a sequence of 0s and 1s 



World with no instructions
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000000 00000 00000 00010 00000 100101 
000000 00000 00101 01000 00000 101010 
000100 01000 00000 00000 00000 000011 
000000 00010 00100 00010 00000 100000 
001000 00101 00101 11111 11111 111111 
000010 00000 10000 00000 00000 000001



World of 18 instructions
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A n Add the number in storage location n into the accumulator. 
E n If the number in the accumulator is greater than or equal to 
zero execute next the order which stands in storage location n; 
otherwise proceed serially. 
Z Stop the machine and ring the warning bell. 

Wilkes and Renwick Selection from the List of 18 Machine 
Instructions for the EDSAC (1949)



2023: How many x86 instructions?  
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Let’s Open the Processor Core 

Computer Architecture 30

Register 0

Register 1

Register 2

Register 3



Let’s Open the Processor Core 
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Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit



Let’s put the Memory (not inside the core)
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Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit Bus



Let’s put the Memory (not inside the core)
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Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

Address Bus

Data Bus



MIPS Instructions: 101

add $0, $1, $2

add: operation,  $0: Destination,  $1 & $2: Source(s) 
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Most of the arithmetic/logical: two sources and one destination



What to do for “a=b+c-d”?  
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What to do for “a=b+c-d”? 

add $t0, $s1, $s2       #$t = b+c

sub $s0, $t0, $s3        #$s = $t-d

Temporary register

Try out: 

f=(g+h) – (i+j)
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Constants and Immediate 

x=x+10

addi $s0, $s0, 10               

i: immediate, for constants, constant: 2s complement 
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No need of a register



Constants and Immediate 

x=x+10

addi $s0, $s0, 10               

i: immediate, for constants 

constant: 16 bits, 2s complement form 
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No need of a register

Do we need a subi ? ☺



Constants and Immediate 

x=x+10

addi $s0, $s0, 10               

i: immediate, for constants, constant: 2s complement form 
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No need of a register

Do we need a subi ? ☺ NO 



Special treatment for zero

$0 or $zero is a special register that 
contains ZERO

a=b   becomes add $s1 $s2 $zero
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Why add if we can move?



Pseudo Instruction 101 

a=b 

move $S0, $s1 
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Not an actual instruction. 
It is used for programming convenience 



Logical Operations

Bitwise operations and shifts (Refer Section 2.6 P&H)
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sll, srl, and, or, nor, andi, ori etc

No not instruction ☺, well not is nor with one operand=0  

32 raw bits instead of a 32-bit number. 



How to store a 32-bit constant 
into a 32-bit register? 
Remember 16-bit ☺

For example, 10101010 10101010 11110000 
11110000
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Trivia? How to store a 32-bit constant into a 
32-bit register? 

For example, 10101010 10101010 11110000 11110000

lui $t0, 0xAAAA  #1010101010101010, lower bits all 0s. 

ori $t0, $t0, 0xF0F0 #1111000011110000
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Trivia? How to store a 32-bit constant into a 
32-bit register? 
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For example, 10101010 10101010 11110000 11110000

lui $t0, 0xAAAA  #1010101010101010, lower bits all 0s. 

Basically it will be 0xAAAA0000 (in hexadecimal) 

ori $t0, $t0, 0xF0F0 #1111000011110000

it will be 0xAAAAF0F0

lui: upper bits, ori/addi: lower bits



Textbook 
Chapter 2 of P&H 
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Coffee Points
Café closed ☺
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ਤੁਹਾਡਾ ਦਿਨ ਚੰਗਾ ਬੀਤੇ
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