
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture
Lecture 5: Intro to ISA and instructions

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Phones
(smart/non-smart)
on silence plz,
Thanks

Computer Architecture 2

Recap of D Flip-flop

Computer Architecture 3

Recap of D Flip-flop

Computer Architecture 4

Recap of D Flip-flop

Computer Architecture 5

Recap of D Flip-flop

Computer Architecture 6

Recap of D Flip-flop

Computer Architecture 7

Delay to make sure all is well

Computer Architecture 8

More Delay

Computer Architecture 9

All in One

Computer Architecture 10

World of State
machines (FSMs)
Moore and Mealy
Machines

11

Moore vs
Mealy

Computer Architecture 12

Moore machine: Output
depends on the current state

Mealy machine: Output
depends on the current state
and inputs

Odd Parity Checker

Computer Architecture 13

Even
[0]

Odd
[1]

0

1 1

Even
[0]

Odd
[1]

0

1 1

0/0

1/1 1/0

0/1

MealyMoore

• Serial input string
• OUT=1 if odd # of 1s in input
• OUT=0 if even # of 1s in input

• Let’s do this for Moore and Mealy

State Transitions

Computer Architecture 14

Present Input Next Present

State State Output

Even 0 Even 0
Even 1 Odd 0
Odd 0 Odd 1
Odd 1 Even 1 Present Input Next Present

State State Output

Even 0 Even 0
Even 1 Odd 1
Odd 0 Odd 1
Odd 1 Even 0

Moore

Mealy

Output changes only when the state changes
Appears after the state transition takes place
outputs change at clock edge
Even = 0
Odd = 1

Output changes when the state and input changes
Appears before the state transition is completed
React faster to inputs — don't wait for clock

Try on your own

Computer Architecture 15

01/10 detector: Moore Machine

Computer Architecture 16

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next current

reset input state state output

1 – – A 0

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B D 0

0 0 C E 0

0 1 C C 0

0 0 D E 1

0 1 D C 1

0 0 E B 1

0 1 E D 1

01/10 detector: Mealy Machine

Computer Architecture 17

current next current

reset input state state output
B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

1 – – A 0

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B C 1

0 0 C B 1

0 1 C C 0

Architecture-101

Computer Architecture 18

Next Few Lectures

Computer Architecture 19

HOW CAN A
PROGRAMME
R INTERACT
WITH THE

PROCESSOR?

THE
LANGUAGE

OF
COMPUTER:

INSTRUCTION
S

INSTRUCTION
S HAVE A

VOCABULARY
CALLED

INSTRUCTION
SET

DRIVEN BY
INSTRUCTION

SET
ARCHITECTUR

E (ISA)

ISA: X86,
ARM, RISC-V,

MIPS

Why MIPS?

Simple yet expressive

Basic principles are similar if not the same. e.g.,
ARM ISA

Still in use today: embedded devices, routers,
modems etc.

Computer Architecture 20

ISA: Abstraction layer

Interface between hardware and software

hides complexity from the software through a
set of simple instructions

Computer Architecture 21

Abstraction Example:
101
a = b + c ; // C code

compiler

add $1, $2, $3 // assembly language as per the ISA

assembler

010101010101010 // machine language, 0s and 1s

Computer Architecture 22

Abstraction Example: 101

Operands can be in registers or in memory

Computer Architecture 23

C
o

re

operands

Registers

A bit detailed

Computer Architecture 24

Costly DRAM
accesses

Costly: 100 timesC
o

re

South pole

32-bit Address

Data

GBs DRAM

Registers

Registers are limited

Instructions

Programmers’ order/command to the processor

Computer Architecture 25

Why Instructions?

Computer Architecture 26

Programmer knows what it can/cannot
Processor knows what it should

Power of abstraction:
World with no instructions:
Programmers – communicate a sequence of 0s and 1s

World with no instructions

Computer Architecture 27

000000 00000 00000 00010 00000 100101
000000 00000 00101 01000 00000 101010
000100 01000 00000 00000 00000 000011
000000 00010 00100 00010 00000 100000
001000 00101 00101 11111 11111 111111
000010 00000 10000 00000 00000 000001

World of 18 instructions

Computer Architecture 28

A n Add the number in storage location n into the accumulator.
E n If the number in the accumulator is greater than or equal to
zero execute next the order which stands in storage location n;
otherwise proceed serially.
Z Stop the machine and ring the warning bell.

Wilkes and Renwick Selection from the List of 18 Machine
Instructions for the EDSAC (1949)

2023: How many x86 instructions?

Computer Architecture 29

Let’s Open the Processor Core

Computer Architecture 30

Register 0

Register 1

Register 2

Register 3

Let’s Open the Processor Core

Computer Architecture 31

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

Let’s put the Memory (not inside the core)

Computer Architecture 32

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit Bus

Let’s put the Memory (not inside the core)

Computer Architecture 33

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

Address Bus

Data Bus

MIPS Instructions: 101

add $0, $1, $2

add: operation, $0: Destination, $1 & $2: Source(s)

Computer Architecture 34

Most of the arithmetic/logical: two sources and one destination

What to do for “a=b+c-d”?

Computer Architecture 35

What to do for “a=b+c-d”?

add $t0, $s1, $s2 #$t = b+c

sub $s0, $t0, $s3 #$s = $t-d

Temporary register

Try out:

f=(g+h) – (i+j)

Computer Architecture 36

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants, constant: 2s complement

Computer Architecture 37

No need of a register

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants

constant: 16 bits, 2s complement form

Computer Architecture 38

No need of a register

Do we need a subi ? ☺

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants, constant: 2s complement form

Computer Architecture 39

No need of a register

Do we need a subi ? ☺ NO

Special treatment for zero

$0 or $zero is a special register that
contains ZERO

a=b becomes add $s1 $s2 $zero

Computer Architecture 40

Why add if we can move?

Pseudo Instruction 101

a=b

move $S0, $s1

Computer Architecture 41

Not an actual instruction.
It is used for programming convenience

Logical Operations

Bitwise operations and shifts (Refer Section 2.6 P&H)

Computer Architecture 42

sll, srl, and, or, nor, andi, ori etc

No not instruction ☺, well not is nor with one operand=0

32 raw bits instead of a 32-bit number.

How to store a 32-bit constant
into a 32-bit register?
Remember 16-bit ☺

For example, 10101010 10101010 11110000
11110000

Computer Architecture 43

Trivia? How to store a 32-bit constant into a
32-bit register?

For example, 10101010 10101010 11110000 11110000

lui $t0, 0xAAAA #1010101010101010, lower bits all 0s.

ori $t0, $t0, 0xF0F0 #1111000011110000

Computer Architecture 44

Trivia? How to store a 32-bit constant into a
32-bit register?

Computer Architecture 45

For example, 10101010 10101010 11110000 11110000

lui $t0, 0xAAAA #1010101010101010, lower bits all 0s.

Basically it will be 0xAAAA0000 (in hexadecimal)

ori $t0, $t0, 0xF0F0 #1111000011110000

it will be 0xAAAAF0F0

lui: upper bits, ori/addi: lower bits

Textbook
Chapter 2 of P&H

Computer Architecture 46

Coffee Points
Café closed ☺

Computer Architecture 47

ਤੁਹਾਡਾ ਦਿਨ ਚੰਗਾ ਬੀਤੇ

Computer Architecture 48

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones (smart/non-smart) on silence plz, Thanks
	Slide 3: Recap of D Flip-flop
	Slide 4: Recap of D Flip-flop
	Slide 5: Recap of D Flip-flop
	Slide 6: Recap of D Flip-flop
	Slide 7: Recap of D Flip-flop
	Slide 8: Delay to make sure all is well
	Slide 9: More Delay
	Slide 10: All in One
	Slide 11: World of State machines (FSMs) Moore and Mealy Machines
	Slide 12: Moore vs Mealy
	Slide 13: Odd Parity Checker
	Slide 14: State Transitions
	Slide 15: Try on your own
	Slide 16: 01/10 detector: Moore Machine
	Slide 17: 01/10 detector: Mealy Machine
	Slide 18: Architecture-101
	Slide 19: Next Few Lectures
	Slide 20: Why MIPS?
	Slide 21: ISA: Abstraction layer
	Slide 22: Abstraction Example: 101
	Slide 23: Abstraction Example: 101
	Slide 24: A bit detailed
	Slide 25: Instructions
	Slide 26: Why Instructions?
	Slide 27: World with no instructions
	Slide 28: World of 18 instructions
	Slide 29: 2023: How many x86 instructions?
	Slide 30: Let’s Open the Processor Core
	Slide 31: Let’s Open the Processor Core
	Slide 32: Let’s put the Memory (not inside the core)
	Slide 33: Let’s put the Memory (not inside the core)
	Slide 34: MIPS Instructions: 101
	Slide 35: What to do for “a=b+c-d”?
	Slide 36: What to do for “a=b+c-d”?
	Slide 37: Constants and Immediate
	Slide 38: Constants and Immediate
	Slide 39: Constants and Immediate
	Slide 40: Special treatment for zero
	Slide 41: Pseudo Instruction 101
	Slide 42: Logical Operations
	Slide 43: How to store a 32-bit constant into a 32-bit register? Remember 16-bit
	Slide 44: Trivia? How to store a 32-bit constant into a 32-bit register?
	Slide 45: Trivia? How to store a 32-bit constant into a 32-bit register?
	Slide 46: Textbook
	Slide 47: Coffee Points Café closed
	Slide 48: ਤੁਹਾਡਾ ਦਿਨ ਚੰਗਾ ਬੀਤੇ

