) cAsPer

CS230: Digital Logic Designh and
Computer Architecture

Lecture 6: MIPS instructions contd.
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

https://www.cse.iitb.ac.in/~biswa/

s

When: Quiz-l, January 27, 11:15 AM
Where: LA-001 and CC-105
Report by 11.10 AM

Duration: 1 hour

Make sure you clear all your doubts '
on

Monday 1:30 to 5:30 PM /
> 4

Computer Architecture o 3

*|SA

* Assembly

* Machine level
* Instructions

Computer Architecture

Memory Instructions

v LOAD from memory
e,
O STORE into the memory

lw St0, 1(Sa0) # St0 = Memory[Sa0 + 1]
sw St0, 1(Sa0) # Memory[Sa0 + 1] = St0

Computer Architecture

Stored
Program
&
Von
Neumann

Computer Architecture

@@0 SRR IR -11-B-0 7 g
M‘39353000 1215 + &
U

4GB of Memory (DRAM) Say, a word: four bytes

Computer Architecture

A register that stores the address of
the instruction

How to

dCCESS 32-bit processor: addresses are of

Instructions: width 32 bits (devil is in the details

Program Q)

Counter (PC) [
So the processor fetches PC, PC+4,
PC+8, in a sequential order /

P 4

Computer Architecture o 8

1946 onwards

Since 1946 all computers have had 5 components

Processor
) Input
Registers,
ALU, PC Memory
(instructions
Datapath +data) Output

Computer Architecture

Example (Remember PC for the time being)

PCX: lw

“PCY: add

PCZ: lui

PCZ=PCY+4 and PCY = PCX+4

Computer Architecture

10

Why Memory? Why
Not Registers?

e Registers are limited. More #registers, higher
access time.

* How? we will see sooner than later.

e Let’s focus on the data part now. How to access
data for our instructions?

Computer Architecture 11

Memory Instructions

v LOAD from memory
e,
O STORE into the memory

lw St0, 1(Sa0) # St0 = Memory[Sa0 + 1]
sw St0, 1(Sa0) # Memory[Sa0 + 1] = St0

Computer Architecture

12

LOAD From the Memory (data—transfer insts)

ri

r32

Memory[Sa0 + 1]

Addr ss Data

{ :.‘ 1 100
w $t0, 1($a0) 31

Load immediate is not a load from memory ©

Computer Architecture 13

STORE
Memory[Sa0 + 1]

sw St0, 1(Sa0)

ri

r32

Computer Architecture 14

Both instructions and data from memory

g=h+A[8];

“peX: Tw $t0, 8(S$3) # A[8)
PCY: add Ss1, $s2, St0 #g=h +t0

PCY = PCX+4

Computer Architecture

15

A gquick recap

Von Neumann (stored program) concept

As registers are limited, data can be there in the
registers or in the memory

Register accesses are through register
names/numbers

Memory accesses are through addresses stored in
registers

Computer Architecture 16

Let’s move
on: Decision

Making
Instructions

* Decisions: if, else

Two instructions:
beq (branch equals to) and
bne (branch not equals to)

beq StO, St1, L1
bne St0O, St1, L1

Computer Architecture

Branch Instructions: Conditional branches

beq StO, St1, L1
goto L1 (statements labeled as L1) if St0 equals St1
bne StO, St1, L1

goto L1 (statements labeled as L1) if StO does not equal to Stl

Computer Architecture 18

if (a <b) // beqg and bne won’t work
here

c=1

The S‘t else

Instruction c=0

(Set on less

than) slt St3, St1, St2 // t1 and t2 contain a
and b '
We can slti too; one of the operand will
be a constant /

o

Computer Architecture o 19

Loops: How
to deal with

it?

while(CS230[i] == k)
1+=1;

say i and k are in $s3 and Ss5, and
the

base of CS230in Ss6

Computer Architecture o

Loops

continued

while(CS230[i] == k)
1+=1;

1. LOAD CS230]i], base address of
CS230is in Ss6

2. We need to go to CS230[i]

3. Assuming CS230 is an integer
array, each index is of 4 bytes.
We need to go to CS230 [i*4

bytes]

Computer Architecture o

Loops contd. (Ss3=i, Ss5=k, Ss6=base address)

sl| Stl, 553, p) /] i*4 While(C5230[i] == k)
add St1, St1, Ss6 // address of CS230[i] M

w St0, 0(St1) // t0 = CS230[i]

one St0, $s5, Exit // go to Exit if CS230[i] not equals to k
addi Ss3,Ss3,1 //i=i+1

Exit: // do nothing Where is the Loop?

Computer Architecture 22

Loops continued

Loop: sl $t1, Ss3, 2 /] i*4 while(CS230[i] == k)
add St1, St1, Ss6 // address of CS230(i] T
lw St0, 0(St1) // t0 = CS230[i]
bne St0, Ss5, Exit // go to Exit if CS230[i] not equals to k
addi Ss3,Ss3,1 // i=i+1

’

Exit: // do nothing How to jump to the Loop?

Computer Architecture 23

Loops continued

Loop: sll St1, $s3, 2 /] i*4 while(CS230[i] == k)
add St1, St1, Ss6 // address of CS230[i] i+=1,
lw St0, 0(St1) // t0 = CS230[i]
bne St0, Ss5, Exit // go to Exit if CS230[i] not equals to k
addi Ss3, Ss3,1 // i=i+1
j Loop // go to loop. j here is jump

Exit: // do nothing

Computer Architecture 24

Textbook
Chapter 2 P&H

Computer Architecture

Coffee Credits
Lisan 2100500/6

Computer Architecture

haben Sie einen guten Tag

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones (smart/non-smart) on silence plz, Thanks
	Slide 3: Logistics
	Slide 4: Recap
	Slide 5: Memory Instructions
	Slide 6: Stored Program
	Slide 7: Memory
	Slide 8: How to access instructions: Program Counter (PC)
	Slide 9: 1946 onwards
	Slide 10: Example (Remember PC for the time being)
	Slide 11: Why Memory? Why Not Registers?
	Slide 12: Memory Instructions
	Slide 13: LOAD From the Memory (data-transfer insts)
	Slide 14: STORE
	Slide 15: Both instructions and data from memory
	Slide 16: A quick recap
	Slide 17: Let’s move on: Decision Making Instructions
	Slide 18: Branch Instructions: Conditional branches
	Slide 19: The slt instruction (Set on less than)
	Slide 20: Loops: How to deal with it?
	Slide 21: Loops continued
	Slide 22: Loops contd. ($s3=i, $s5=k, $s6=base address)
	Slide 23: Loops continued
	Slide 24: Loops continued
	Slide 25: Textbook Chapter 2 P&H
	Slide 26: Coffee Credits Lisan 210050076
	Slide 27: haben Sie einen guten Tag

