
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture

Lecture 6: MIPS instructions contd.
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Phones (smart/non-smart)
on silence plz, Thanks

Computer Architecture 2

Logistics

When: Quiz-I, January 27, 11:15 AM

Where: LA-001 and CC-105

Report by 11.10 AM

Duration: 1 hour

Make sure you clear all your doubts
on

Monday 1:30 to 5:30 PM

Computer Architecture 3

Recap

• ISA

•Assembly

•Machine level

• Instructions

•

Computer Architecture 4

Memory Instructions

Computer Architecture 5

C
o

re

lw $t0, 1($a0) # $t0 = Memory[$a0 + 1]
sw $t0, 1($a0) # Memory[$a0 + 1] = $t0

LOAD from memory

STORE into the memory

Stored
Program

Stored
Program

&
Von

Neumann

Memory

Computer Architecture 7

4GB of Memory (DRAM) Say, a word: four bytes

How to
access
instructions:
Program
Counter (PC)

A register that stores the address of
the instruction

32-bit processor: addresses are of
width 32 bits (devil is in the details
☺)

So the processor fetches PC, PC+4,
PC+8, ….. in a sequential order

Computer Architecture 8

1946 onwards

Computer Architecture 9

Registers,
ALU, PC

Datapath

Memory
(instructions
+data)

Processor
Input

Output

Since 1946 all computers have had 5 components

Example (Remember PC for the time being)

PCX: lw

PCY: add

PCZ: lui

PCZ=PCY+4 and PCY = PCX+4

Computer Architecture 10

Why Memory? Why
Not Registers?
• Registers are limited. More #registers, higher

access time.

• How? we will see sooner than later.

• Let’s focus on the data part now. How to access
data for our instructions?

Computer Architecture 11

Memory Instructions

Computer Architecture 12

C
o

re

lw $t0, 1($a0) # $t0 = Memory[$a0 + 1]
sw $t0, 1($a0) # Memory[$a0 + 1] = $t0

LOAD from memory

STORE into the memory

LOAD From the Memory (data-transfer insts)

Computer Architecture 13

C
o

re

r1

r32

.

.

.

0

1

.

.

.

10

100

.

.

.

Address Data

lw $t0, 1($a0)

Memory[$a0 + 1]

Load immediate is not a load from memory ☺

STORE

Computer Architecture 14

C
o

re

r1

r32

.

.

.

0

1

.

.

.

10

100

.

.

.

Address Data

sw $t0, 1($a0)

Memory[$a0 + 1]

Both instructions and data from memory

g = h + A [8];

PCX: lw $t0, 8($3) # A[8]

PCY: add $s1, $s2, $t0 # g = h + t0

PCY = PCX+4

Computer Architecture 15

A quick recap

Von Neumann (stored program) concept

As registers are limited, data can be there in the
registers or in the memory

Register accesses are through register
names/numbers

Memory accesses are through addresses stored in
registers

Computer Architecture 16

Let’s move
on: Decision
Making
Instructions

•Decisions: if, else ….

Two instructions:

beq (branch equals to) and

bne (branch not equals to)

beq $t0, $t1, L1

bne $t0, $t1, L1

Computer Architecture 17

Branch Instructions: Conditional branches

beq $t0, $t1, L1

goto L1 (statements labeled as L1) if $t0 equals $t1

bne $t0, $t1, L1

goto L1 (statements labeled as L1) if $t0 does not equal to $t1

Computer Architecture 18

The slt
instruction
(Set on less
than)

if (a < b) // beq and bne won’t work
here

c=1

else

c=0

slt $t3, $t1, $t2 // t1 and t2 contain a
and b

We can slti too; one of the operand will
be a constant

Computer Architecture 19

Loops: How
to deal with
it?

while(CS230[i] == k)

i+=1;

say i and k are in $s3 and $s5, and
the

base of CS230 in $s6

Computer Architecture 20

Loops
continued

while(CS230[i] == k)

i+=1;

1. LOAD CS230[i], base address of
CS230 is in $s6

2. We need to go to CS230[i]

3. Assuming CS230 is an integer
array, each index is of 4 bytes.
We need to go to CS230 [i*4
bytes]

Computer Architecture 21

Loops contd. ($s3=i, $s5=k, $s6=base address)

sll $t1, $s3, 2 // i*4

add $t1, $t1, $s6 // address of CS230[i]

lw $t0, 0($t1) // t0 = CS230[i]

bne $t0, $s5, Exit // go to Exit if CS230[i] not equals to k

addi $s3, $s3,1 // i=i+1

Exit: // do nothing

Computer Architecture 22

while(CS230[i] == k)
i+=1;

Where is the Loop?

Loops continued

Loop: sll $t1, $s3, 2 // i*4

add $t1, $t1, $s6 // address of CS230[i]

lw $t0, 0($t1) // t0 = CS230[i]

bne $t0, $s5, Exit // go to Exit if CS230[i] not equals to k

addi $s3, $s3,1 // i=i+1

Exit: // do nothing

Computer Architecture 23

while(CS230[i] == k)
i+=1;

How to jump to the Loop?

Loops continued

Loop: sll $t1, $s3, 2 // i*4
add $t1, $t1, $s6 // address of CS230[i]
lw $t0, 0($t1) // t0 = CS230[i]
bne $t0, $s5, Exit // go to Exit if CS230[i] not equals to k
addi $s3, $s3,1 // i=i+1
j Loop // go to loop. j here is jump

Exit: // do nothing

Computer Architecture 24

while(CS230[i] == k)
i+=1;

Textbook
Chapter 2 P&H

Computer Architecture 25

Coffee Credits
Lisan 210050076

Computer Architecture 26

haben Sie einen guten Tag

Computer Architecture 27

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones (smart/non-smart) on silence plz, Thanks
	Slide 3: Logistics
	Slide 4: Recap
	Slide 5: Memory Instructions
	Slide 6: Stored Program
	Slide 7: Memory
	Slide 8: How to access instructions: Program Counter (PC)
	Slide 9: 1946 onwards
	Slide 10: Example (Remember PC for the time being)
	Slide 11: Why Memory? Why Not Registers?
	Slide 12: Memory Instructions
	Slide 13: LOAD From the Memory (data-transfer insts)
	Slide 14: STORE
	Slide 15: Both instructions and data from memory
	Slide 16: A quick recap
	Slide 17: Let’s move on: Decision Making Instructions
	Slide 18: Branch Instructions: Conditional branches
	Slide 19: The slt instruction (Set on less than)
	Slide 20: Loops: How to deal with it?
	Slide 21: Loops continued
	Slide 22: Loops contd. ($s3=i, $s5=k, $s6=base address)
	Slide 23: Loops continued
	Slide 24: Loops continued
	Slide 25: Textbook Chapter 2 P&H
	Slide 26: Coffee Credits Lisan 210050076
	Slide 27: haben Sie einen guten Tag

