## CS230: Digital Logic Design and Computer Architecture <br> Lecture 6: MIPS instructions contd.

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

## rrcucuras

## grrucup

## Phones (smart/non-smart) on silence plz, Thanks

# When: Quiz-I, January 27, 11:15 AM Where: LA-001 and CC-105 Report by 11.10 AM 

## Logistics

## Duration: 1 hour

## Make sure you clear all your doubts on <br> Monday 1:30 to 5:30 PM

- ISA
- Assembly
- Machine level
- Instructions


## Memory Instructions

## $\stackrel{\text { U }}{0} \leftarrow \frac{\text { LOAD from memory }}{\text { STORE into the memory }}$



Iw \$t0, 1(\$a0) \# \$t0 = Memory[\$ $\mathrm{a} 0+1]$
sw \$t0, 1(\$a0) \# Memory[\$a0 + 1] = \$t0

## Stored <br> Program \& <br> Von <br> Neumann



## Memory



## 4GB of Memory (DRAM)

Say, a word: four bytes

A register that stores the address of the instruction

## How to access instructions: Program Counter (PC)

32-bit processor: addresses are of width 32 bits (devil is in the details © )

So the processor fetches PC, PC +4 , PC +8, ..... in a sequential order

## 1946 onwards

Since 1946 all computers have had 5 components


Computer Architecture

## Example (Remember PC for the time being)



## Why Memory? Why Not Registers?

- Registers are limited. More \#registers, higher access time.
- How? we will see sooner than later.
- Let's focus on the data part now. How to access data for our instructions?


## Memory Instructions

## $\stackrel{\text { U }}{0} \leftarrow \frac{\text { LOAD from memory }}{\text { STORE into the memory }}$



Iw \$t0, 1(\$a0) \# \$t0 = Memory[\$a0 + 1]
sw \$t0, 1(\$a0) \# Memory[\$a0 + 1] = \$t0

## LOAD From the Memory (data-transfer insts)

 Memory[\$a0 + 1]

Load immediate is not a load from memory - ;

## STORE



## Both instructions and data from memory

$$
\mathrm{g}=\mathrm{h}+\mathrm{A}[8] ;
$$

PPCX: Tw \$t0, 8(\$3) \# A[8] PCY: add \$s1, \$s2, \$t0 \# g = h + t0

$P C Y=P C X+4$


A quick recap


Von Neumann (stored program) concept

As registers are limited, data can be there in the registers or in the memory


Register accesses are through register names/numbers
Memory accesses are through addresses stored in registers

Computer Architecture

- Decisions: if, else ....


## Let's move on: Decision Making Instructions

## Two instructions:

beq (branch equals to) and bne (branch not equals to)
beq $\$ \mathrm{t} 0, \$ \mathrm{t} 1$, L1 bne \$t0, \$t1, L1

## Branch Instructions: Conditional branches

beq $\$ \mathrm{t0}$, $\$ \mathrm{t} 1$, L1
goto L1 (statements labeled as L1) if $\$ \mathbf{t 0}$ equals $\$ \mathbf{t} 1$
bne $\$ \mathrm{t0}$, $\$ \mathrm{t} 1, \mathrm{~L} 1$
goto L1 (statements labeled as L1) if $\$$ t0 does not equal to $\$ \mathrm{t} 1$

## The slt instruction (Set on less than)

if ( $\mathrm{a}<\mathrm{b}$ ) // beq and bne won't work here

$$
c=1
$$

else

$$
c=0
$$

slt \$t3, \$t1, \$t2 // t1 and t2 contain a and $b$
We can slti too; one of the operand will be a constant

# Loops: How to deal with 

while(CS230[i] == k) $i+=1 ;$
say $i$ and $k$ are in $\$ \mathrm{~s} 3$ and $\$ \mathrm{~s} 5$, and the
base of CS230 in \$s6

## Loops continued

while(CS230[i] == $k$ )
i+=1;

1. LOAD CS230[i], base address of CS230 is in \$s6
2. We need to go to CS230[i]
3. Assuming CS230 is an integer array, each index is of 4 bytes. We need to go to CS230 [i*4 bytes]

Loops contd. (\$s3=i, \$s5=k, \$s6=base address)
sll \$t1, \$s3, $2 \quad / / \mathrm{i}^{*} 4$
while(CS230[i] == k)
i+=1;
add $\$ 11, \$ 11, \$ s 6 / /$ address of CS230[i]
Iw \$t0, 0(\$t1) //t0 = CS230[i]
bne $\$ \mathbf{t} 0, \$ \mathrm{~s} 5$, Exit // go to Exit if CS230[i] not equals to k addi \$s3, \$s3,1 // i=i+1

Exit:
// do nothing
Where is the Loop?

## Loops continued

Loop: sll \$t1, \$s3, $2 \quad / / i^{*} 4$
while(CS230[i] == k)
add \$t1, \$t1, \$s6 // address of CS230[i] i+=1;
Iw \$t0, 0(\$t1) // t0 = CS230[i]
bne $\$ \mathrm{t} 0$, $\$ \mathrm{~s} 5$, Exit // go to Exit if CS230[i] not equals to k addi $\$ \mathrm{~s} 3, \$ \mathrm{~s} 3,1 \quad / / \mathrm{i}=\mathrm{i}+1$

Exit:
// do nothing How to jump to the Loop?

## Loops continued

Loop: sll \$t1, \$s3, $2 \quad / /$ i*4 $^{*}$
add \$t1, \$t1, \$s6 // address of CS230[i] Iw \$t0, 0(\$t1) // t0 = CS230[i]
bne \$t0, \$s5, Exit // go to Exit if CS230[i] not equals to $k$ addi \$s3, \$s3,1 // i=i+1
j Loop // go to loop. j here is jump

Exit:
// do nothing

# Textbook <br> Chapter 2 P\&H 

## Coffee Credits <br> Lisan 210050076

