
CS230: Digital Logic Design
and Computer Architecture

Lecture-7: MIPS Instructions-II
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

Logistics

Computer Architecture 2

Exam on 27th January at 11 AM

Content: Digital Logic only

Look at the seating
plan@Piazza, LA-001, CC-105

Lab-2, Please start doing it, last-
minute plans may not work.

The complete picture

Program – > Compiler -> Assembler –> Linker –>

Loader -> Processor

Computer Architecture 3

Program Compiler Assembler Linker

Loader Processor

Source file, Object File and Executable File

Computer Architecture 4

Source file Assembler Object file

LinkerObject file Executable file

Computer Architecture 5

Sequential execution and jumps

PC, PC+4, PC+8, …………….

PC, PC+4, {if condition here, TRUE} PC+32, ………

j instruction loads an immediate into the PC. It can be either specified
as an offset or the label (assembler will convert this label into an
offset). Next: jr, jal, ..

Computer Architecture 6

Functions (Procedures)

int sum(int a, int b)

{

int c=a+b;

return c;

}

void main (void)

{

int i=1;

int j=2;

int k = sum(i,j);

}

Computer Architecture 7

Simple ☺

int sum(int a, int b)

{

int c=a+b;

return c;

}

void main (void)

{

int i=1;

int j=2;

int k = sum (i,j);

}

Computer Architecture 8

//jump to function

Simple ☺

int sum(int a, int b)

{

int c=a+b;

return c;

}

void main (void)

{

int i=1;

int j=2;

int k = sum(i,j);

}

Computer Architecture 9

j sum

How do you return? 

Awesome Instructions

• jal: Jump and Link and jr $ra

jal L1:

go to L1, the instruction that has to be executed next is in L1.

and

save the address of the next instruction in $ra. ra is an awesome
register that stores the return address.

Computer Architecture 10

Awesome Instructions

• jal: Jump and Link and jr $ra

jal L1:

go to L1, the instruction that has to be executed next is in L1.

and

save the address of the next instruction in $ra. ra is an awesome
register that stores the return address (ra).

Computer Architecture 11

Go to instruction whose
address is stored in ra (PC+4)

Let’s Have a Complete Picture

PC+4 addi $R1, $R0, 2 // R0 = 0, R1=2

PC+8 jal sum // R31 (ra) = PC+12

PC+12 add $R0, $R3, $R3

sum:

PC+100 addi $R2, $R1, 4

PC+104 jr

Computer Architecture 12

Let’s Have a Complete Picture

PC+4 addi $R1, $R0, 2 // R0 = 0, R1=2

PC+8 jal sum // R31 = PC+12 (ra)

PC+12 add $R0, $R3, $R3

sum:

PC+100 addi $R2, $R1, 4 // R2 =6

PC+104 jr $R31

Computer Architecture 13

Let’s Have a Complete Picture

PC+4 addi $R1, $R0, 2 // R0 = R3 = 0, R1=2

PC+8 jal sum // R31 = PC+12 (ra)

PC+12 add $R0, $R3, $R3 // R0 = 0

sum:

PC+100 addi $R2, $R1, 4 // R2 =6

PC+104 jr $R31

Computer Architecture 14

Let’s Have a Complete Picture

PC+4 addi $R1, $R0, 2 // R0 = R3 = 0, R1=2

PC+8 jal sum // R31 = PC+12 (ra)

PC+12 add $R0, $R2, $R2 // R0 = 12

sum:

PC+100 addi $R2, $R1, 4 // R2 =6

PC+104 jr $R31

Computer Architecture 15

JAL: Jump and Link, What’s wrong?

PC+4 addi $R1, $R0, 2

PC+8 jal sum // R31 = PC+12 (ra)

PC+12 add $R0, $R2, $R2

Computer Architecture 16

Well

As per MIPS specification, Check P&H MIPS
sheet 

PC: jal label ra = PC + 8

PC+4:

PC+8:

PC+4 or PC+8? Why this

Computer Architecture 18

PC+4 at the
moment

PC+8 after a
month or so

☺

Quick recap

Usage of j, jr, jal, and $ra

Computer Architecture 19

MIPS provides

Upto four arguments can be passed from the caller to the callee while
using jal. It uses registers $a0 to $a3

A callee can return upto two values to the caller. It uses registers $v0
and $v1

Computer Architecture 20

What if?

main(){

a = a + f1(a);

} f1:

f1(a) { f2’s argument in $a0 to $a3

a = a - f2(a); return a;} jal f2

f2(a) {

a = a + f3(a); return a;}

f3(a) {

a = a + 1; return a;}

Computer Architecture 21

What if?

f1:

f2’s argument in $a0 to $a3

jal f2

…

f2:

f3’s argument in $a0 to $a3

jal f3

…

Computer Architecture 22

What is the big deal?

f1:

f2’s argument in $a0 to $a3

jal f2

…

f2:

f3’s argument in $a0 to $a3

jal f3

...

Computer Architecture 23

What is the big deal? Oh no!

f1:

PC: f2’s argument in $a0 to $a3

PC+4: jal f2 // $ra = PC+8

…

f2:

PC+100: f3’s argument in $a0 to $a3

PC+104: jal f3 // $ra = PC+108

f3: …

... jr $ra

Computer Architecture 24

What is the big deal? Oh no!

f1:

PC: f2’s argument in $a0 to $a3

PC+4: jal f2 // $ra = PC+8

…

f2:

PC+100: f3’s argument in $a0 to $a3

PC+104: jal f3 // $ra = PC+108

jr $ra Oh no!! f3: …

... jr $ra

Computer Architecture 25

Saving and Restoring Registers (limited)

caller registers

callee registers

Why?

Callee does not know, registers used by callers, can be many callers too

Caller does not know the callee’s plan ☺

Computer Architecture 26

MIPS 32 registers

• Registers Total Regs
• $Zero 1
• (Return) Value registers ($v0,$v1) 3
• Argument registers ($a0-$a3) 7
• Return Address ($ra) 8
• Saved registers ($s0-$s7) 16
• Temporary registers ($t0-$t9) 26
• Global Pointer ($gp) 27
• Stack Pointer ($sp) 28
• Frame Pointer ($fp), or $t10 29

• 2 for OS ($k0, $k1), 1 for assembler ($at)

Computer Architecture 27

Before that: Who does what?

In MIPS,

$t0 to $t9 (R8 to R15, R24, and R25) are temporary and caller saved
registers. Register values not preserved across function calls (call-
clobbered).

$s0 to $s7 (R16 to R23) are callee saved registers. Register values are
preserved across function calls (call-preserved).

$ra is caller or callee saved register ?

Computer Architecture 28

Before that: Who does what?

In MIPS,

$t0 to $t9 (R8 to R15, R24, and R25) are temporary and caller saved
registers. Register values not preserved across function calls (call-
clobbered).

$s0 to $s7 (R16 to R23) are callee saved registers. Register values are
preserved across function calls (call-preserved).

$ra is callee saved register.

Computer Architecture 29

Coffee Credits

Yashwant, 210050171, +2

buona giornata

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Logistics
	Slide 3: The complete picture
	Slide 4: Source file, Object File and Executable File
	Slide 5
	Slide 6: Sequential execution and jumps
	Slide 7: Functions (Procedures)
	Slide 8: Simple 
	Slide 9: Simple 
	Slide 10: Awesome Instructions
	Slide 11: Awesome Instructions
	Slide 12: Let’s Have a Complete Picture
	Slide 13: Let’s Have a Complete Picture
	Slide 14: Let’s Have a Complete Picture
	Slide 15: Let’s Have a Complete Picture
	Slide 16: JAL: Jump and Link, What’s wrong?
	Slide 17: Well
	Slide 18: PC+4 or PC+8? Why this
	Slide 19: Quick recap
	Slide 20: MIPS provides
	Slide 21: What if?
	Slide 22: What if?
	Slide 23: What is the big deal?
	Slide 24: What is the big deal? Oh no!
	Slide 25: What is the big deal? Oh no!
	Slide 26: Saving and Restoring Registers (limited)
	Slide 27: MIPS 32 registers
	Slide 28: Before that: Who does what?
	Slide 29: Before that: Who does what?
	Slide 30: Coffee Credits
	Slide 31: buona giornata

