
CS230: Digital Logic Design 
and Computer Architecture

Lecture-7: MIPS Instructions-II
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html



Logistics

Computer Architecture 2

Exam on 27th January at 11 AM

Content: Digital Logic only  

Look at the seating 
plan@Piazza, LA-001, CC-105 

Lab-2, Please start doing it, last-
minute plans may not work. 



The complete picture

Program – >  Compiler -> Assembler –> Linker –> 

Loader -> Processor 
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Program Compiler Assembler Linker

Loader Processor



Source file, Object File and Executable File
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Source file Assembler Object file

LinkerObject file Executable file
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Sequential execution and jumps

PC, PC+4, PC+8, …………….

PC, PC+4, {if condition here, TRUE} PC+32, ……… 

j  instruction loads an immediate into the PC. It can be either specified 
as an offset or the label (assembler will convert this label into an 
offset). Next: jr, jal, ..
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Functions (Procedures) 

int sum(int a, int b)

{

int c=a+b;

return c;

}

void main (void)

{

int i=1; 

int j=2;

int k = sum(i,j);

}
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Simple ☺

int sum(int a, int b)

{

int c=a+b;

return c;

}

void main (void)

{

int i=1; 

int j=2;

int k = sum (i,j);

}
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//jump to function



Simple ☺

int sum(int a, int b)

{

int c=a+b;

return c;

}

void main (void)

{

int i=1; 

int j=2;

int k = sum(i,j);

}
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j sum 

How do you return? 



Awesome Instructions

• jal: Jump and Link      and          jr $ra

jal L1: 

go to L1, the instruction that has to be executed next is in L1. 

and

save the address of the next instruction in $ra. ra is an awesome 
register that stores the return address.  
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Awesome Instructions

• jal: Jump and Link      and          jr $ra

jal L1: 

go to L1, the instruction that has to be executed next is in L1. 

and

save the address of the next instruction in $ra. ra is an awesome 
register that stores the return address (ra).  
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Go to instruction whose 
address is stored in ra (PC+4) 



Let’s Have a Complete Picture

PC+4           addi $R1, $R0, 2               // R0 = 0, R1=2

PC+8           jal sum                              // R31 (ra) = PC+12

PC+12         add $R0, $R3, $R3

sum: 

PC+100      addi $R2, $R1, 4 

PC+104      jr
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Let’s Have a Complete Picture

PC+4           addi $R1, $R0, 2               // R0 = 0, R1=2

PC+8           jal sum                              // R31 = PC+12  (ra)

PC+12         add $R0, $R3, $R3

sum: 

PC+100      addi $R2, $R1, 4             // R2 =6 

PC+104      jr $R31
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Let’s Have a Complete Picture

PC+4           addi $R1, $R0, 2               // R0 = R3 = 0, R1=2

PC+8           jal sum                              // R31 = PC+12  (ra)

PC+12         add $R0, $R3, $R3          // R0 = 0

sum: 

PC+100      addi $R2, $R1, 4             // R2 =6 

PC+104      jr $R31
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Let’s Have a Complete Picture

PC+4           addi $R1, $R0, 2               // R0 = R3 = 0, R1=2

PC+8           jal sum                              // R31 = PC+12  (ra)

PC+12         add $R0, $R2, $R2          // R0 = 12

sum: 

PC+100      addi $R2, $R1, 4             // R2 =6 

PC+104      jr $R31
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JAL: Jump and Link, What’s wrong?

PC+4           addi $R1, $R0, 2

PC+8           jal sum                              // R31 = PC+12  (ra)

PC+12         add $R0, $R2, $R2          
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Well 

As per MIPS specification, Check P&H MIPS 
sheet 

PC: jal label                        ra = PC + 8 

PC+4: 

PC+8: 



PC+4 or PC+8? Why this 
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PC+4 at the 
moment 

PC+8 after a 
month or so 

☺



Quick recap

Usage of j, jr, jal, and $ra
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MIPS provides

Upto four arguments can be passed from the caller to the callee while 
using jal. It uses registers $a0 to $a3 

A callee can return upto two values to the caller. It uses registers $v0 
and $v1
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What if?

main(){

a = a + f1(a);

}                                                       f1:

f1(a) {                                                     f2’s argument in $a0 to $a3 

a = a - f2(a);  return a;}                        jal f2  

f2(a) {

a = a + f3(a); return a;}

f3(a) {

a = a + 1;       return a;}   
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What if?

f1:

f2’s argument in $a0 to $a3 

jal f2 

…

f2:

f3’s argument in $a0 to $a3 

jal f3  

…
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What is the big deal?

f1:

f2’s argument in $a0 to $a3 

jal f2 

…

f2:

f3’s argument in $a0 to $a3 

jal f3  

...
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What is the big deal? Oh no!

f1:

PC:   f2’s argument in $a0 to $a3 

PC+4: jal f2                     // $ra = PC+8 

…

f2:

PC+100: f3’s argument in $a0 to $a3 

PC+104: jal f3              // $ra = PC+108 

f3: …                 

...                                                                                jr $ra
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What is the big deal? Oh no!

f1:

PC:   f2’s argument in $a0 to $a3 

PC+4: jal f2                     // $ra = PC+8 

…

f2:

PC+100: f3’s argument in $a0 to $a3 

PC+104: jal f3              // $ra = PC+108 

jr $ra Oh no!!                                           f3: …                 

...                                                                                jr $ra
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Saving and Restoring Registers (limited)

caller registers

callee registers 

Why? 

Callee does not know, registers used by callers, can be many callers too   

Caller does not know the callee’s plan ☺
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MIPS 32 registers

• Registers Total Regs
• $Zero 1
• (Return) Value registers ($v0,$v1) 3
• Argument registers ($a0-$a3) 7
• Return Address ($ra) 8
• Saved registers ($s0-$s7) 16
• Temporary registers ($t0-$t9) 26
• Global Pointer ($gp) 27
• Stack Pointer ($sp) 28
• Frame Pointer ($fp), or $t10 29

• 2 for OS ($k0, $k1), 1 for assembler ($at)

Computer Architecture 27



Before that: Who does what? 

In MIPS, 

$t0 to $t9 (R8 to R15, R24, and R25) are temporary and caller saved 
registers. Register values not preserved across function calls (call-
clobbered). 

$s0 to $s7 (R16 to R23) are callee saved registers. Register values are 
preserved across function calls (call-preserved). 

$ra is caller or callee saved register ?
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Before that: Who does what? 

In MIPS, 

$t0 to $t9 (R8 to R15, R24, and R25) are temporary and caller saved 
registers. Register values not preserved across function calls (call-
clobbered). 

$s0 to $s7 (R16 to R23) are callee saved registers. Register values are 
preserved across function calls (call-preserved). 

$ra is callee saved register. 
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Coffee Credits 

Yashwant, 210050171,  +2 



buona giornata


	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Logistics
	Slide 3: The complete picture
	Slide 4: Source file, Object File and Executable File
	Slide 5
	Slide 6: Sequential execution and jumps
	Slide 7: Functions (Procedures) 
	Slide 8: Simple  
	Slide 9: Simple  
	Slide 10: Awesome Instructions
	Slide 11: Awesome Instructions
	Slide 12: Let’s Have a Complete Picture
	Slide 13: Let’s Have a Complete Picture
	Slide 14: Let’s Have a Complete Picture
	Slide 15: Let’s Have a Complete Picture
	Slide 16: JAL: Jump and Link, What’s wrong?
	Slide 17: Well 
	Slide 18: PC+4 or PC+8? Why this 
	Slide 19: Quick recap
	Slide 20: MIPS provides
	Slide 21: What if?
	Slide 22: What if?
	Slide 23: What is the big deal?
	Slide 24: What is the big deal? Oh no!
	Slide 25: What is the big deal? Oh no!
	Slide 26: Saving and Restoring Registers (limited)
	Slide 27: MIPS 32 registers
	Slide 28: Before that: Who does what? 
	Slide 29: Before that: Who does what? 
	Slide 30: Coffee Credits 
	Slide 31: buona giornata 

