
CS230: Digital Logic Design 
and Computer Architecture

Lecture 8: MIPSInstructions contd…
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html



Phones on Silence

If you are busy, 

Then you may not consider 
making others busy ☺



Do not forget 32 
MIPS registers only
Register spilling 
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Quick recap

Register spilling, 32 MIPS registers, nested functions, 

oh no!

Spilled registers: Where else can we store?
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Where else can we store? 
Remember previous lectures: registers or memory
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The loaded program 

System program that loads the 
executable into the memory. 

Every executable has a  text, 
heap/stack data segments
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Stack in MIPS 
(Grows 

downwards, 
High to Low)



MIPS way of handling it: 
The Stack (part of DRAM, for each function call) 
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Stores caller data

$sp (stack pointer) points to the address where stack ends
One per function, private memory area, else the same 
problem 

Stack grows down
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MIPS way of handling it: Before function call 
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sp Caller



MIPS way of handling it: Function call is ON
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sp

Caller R1

Callee R2

Callee R4 Saved



MIPS way of handling it: After the function 
call
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sp Caller R1



How to save and restore?

Save:

addi $sp, $sp, -4

sw R4, ($sp) 

Restore:

lw R4, ($sp) 

addi $sp, $sp, 4
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32 bit registers, 4 bytes, one word, remember

sp Callee R4

Saved

sp

Restored

Caller R1

Caller R1



Nested Functions (Remember main()  is a 
function too ☺ )
CS230 // jal cs230

{

CS330 // jal cs330

{ 

CS430 // jal cs430 

{

} //jr

} //jr

} // jr
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The final one: Frame pointer

Stack also stores local variables and data structures (local arrays and 
structures) for a function along with the return address(es). 

Frame pointer will get incremented and decremented based on the 
local arguments used. 

Computer Architecture 15



The final one: Frame pointer

Frame pointer: Points to local variables and saved registers. Points to 
the highest address in the procedure frame. Stays there throughout the 
procedure. Stack pointer, moves around. 
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sp
regs.

fp returns

sp

fp

sp

fp

Awesomeness: You can access any using fp/sp and an offset

local



Try This Out! Discuss on Piazza
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Page no A-27 to A-29 P&H 

Recursive function fact(n) 

Look for sp, fp, ra, jal, and jr



For the Curious Ones (Beyond CS230)

Stack buffer overflow - 101: 
https://en.wikipedia.org/wiki/Stack_buffer_overflow

Nilabh ☺
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https://en.wikipedia.org/wiki/Stack_buffer_overflow


How to know 
what is what? 
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PAUSE and SUMMARISE
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Why instruction decoding?
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C
o
re Based on PC

LOAD inst. from memory



Instruction received then what?
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C
o
re

Remember instructions are of 32-bit size (in MIPS), 
so PC+4

How will the processor know what to infer from these 32 bits?
Simple: Have a decoder ☺



Instruction Decoding
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op rs rt Immediate

6 bits, maximum 
64 operations
add
sub
mul
lw
bne …….

5 bits, 32 registers
(R0 to R31)

16 bit constant 

031

5 bits, 32 registers (R0 to R31)

2126 16



10K Feet View of MIPS encoding
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rs rt functop rd shamt

Why this field? 
Wastage of space 



Good design demands good compromises

Computer Architecture 25

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32 n.a.

sub R 0 reg reg reg 0 34 n.a.

addi I 8 reg reg n.a. n.a. n.a. constant

lw I 35 reg reg n.a. n.a. n.a. address

sw I 43 reg reg n.a. n.a. n.a. address

tells how to treat the last set of fields: 
three fields or one field, still why funct



Let’s have a look
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rs rt functop rd shamt

031 2126 16 611

rs rt Immediateop

031 2126 16

Target jump addressop

031 26

R-type

I-type

J-type



Why not?
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rs rtop+funct rd shamt

031 20 15 510

rs rt Immediateop

031 2126 16

Target jump addressop

031 26

R-type

I-type

J-type



What is a good 
compromise? 

• Fixed length instructions ☺
32-bit irrespective of ops

• Fields are at the same or 
almost same location

• All formats look similar 
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તમારો દિવસ શભુ રહે
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