
CS230: Digital Logic Design
and Computer Architecture

Lecture 8: MIPSInstructions contd…
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

Phones on Silence

If you are busy,

Then you may not consider
making others busy ☺

Do not forget 32
MIPS registers only
Register spilling 

3

Quick recap

Register spilling, 32 MIPS registers, nested functions,

oh no!

Spilled registers: Where else can we store?

Computer Architecture 4

Where else can we store?
Remember previous lectures: registers or memory

Computer Architecture 5

The loaded program

System program that loads the
executable into the memory.

Every executable has a text,
heap/stack data segments

Computer Architecture 6

Stack in MIPS
(Grows

downwards,
High to Low)

MIPS way of handling it:
The Stack (part of DRAM, for each function call)

Computer Architecture 8

Stores caller data

$sp (stack pointer) points to the address where stack ends
One per function, private memory area, else the same
problem 

Stack grows down

Computer Architecture 9

MIPS way of handling it: Before function call

Computer Architecture 10

sp Caller

MIPS way of handling it: Function call is ON

Computer Architecture 11

sp

Caller R1

Callee R2

Callee R4 Saved

MIPS way of handling it: After the function
call

Computer Architecture 12

sp Caller R1

How to save and restore?

Save:

addi $sp, $sp, -4

sw R4, ($sp)

Restore:

lw R4, ($sp)

addi $sp, $sp, 4

Computer Architecture 13

32 bit registers, 4 bytes, one word, remember

sp Callee R4

Saved

sp

Restored

Caller R1

Caller R1

Nested Functions (Remember main() is a
function too ☺)
CS230 // jal cs230

{

CS330 // jal cs330

{

CS430 // jal cs430

{

} //jr

} //jr

} // jr

Computer Architecture 14

The final one: Frame pointer

Stack also stores local variables and data structures (local arrays and
structures) for a function along with the return address(es).

Frame pointer will get incremented and decremented based on the
local arguments used.

Computer Architecture 15

The final one: Frame pointer

Frame pointer: Points to local variables and saved registers. Points to
the highest address in the procedure frame. Stays there throughout the
procedure. Stack pointer, moves around.

Computer Architecture 16

sp
regs.

fp returns

sp

fp

sp

fp

Awesomeness: You can access any using fp/sp and an offset

local

Try This Out! Discuss on Piazza

C
o

m
p

u
te

r A
rch

ite
ctu

re

17

Page no A-27 to A-29 P&H

Recursive function fact(n)

Look for sp, fp, ra, jal, and jr

For the Curious Ones (Beyond CS230)

Stack buffer overflow - 101:
https://en.wikipedia.org/wiki/Stack_buffer_overflow

Nilabh ☺

Computer Architecture 18

https://en.wikipedia.org/wiki/Stack_buffer_overflow

How to know
what is what?

Computer Architecture 19

PAUSE and SUMMARISE

Computer Architecture 20

Why instruction decoding?

Computer Architecture 21

C
o
re Based on PC

LOAD inst. from memory

Instruction received then what?

Computer Architecture 22

C
o
re

Remember instructions are of 32-bit size (in MIPS),
so PC+4

How will the processor know what to infer from these 32 bits?
Simple: Have a decoder ☺

Instruction Decoding

Computer Architecture 23

op rs rt Immediate

6 bits, maximum
64 operations
add
sub
mul
lw
bne …….

5 bits, 32 registers
(R0 to R31)

16 bit constant

031

5 bits, 32 registers (R0 to R31)

2126 16

10K Feet View of MIPS encoding

Computer Architecture 24

rs rt functop rd shamt

Why this field?
Wastage of space 

Good design demands good compromises

Computer Architecture 25

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32 n.a.

sub R 0 reg reg reg 0 34 n.a.

addi I 8 reg reg n.a. n.a. n.a. constant

lw I 35 reg reg n.a. n.a. n.a. address

sw I 43 reg reg n.a. n.a. n.a. address

tells how to treat the last set of fields:
three fields or one field, still why funct

Let’s have a look

Computer Architecture 26

rs rt functop rd shamt

031 2126 16 611

rs rt Immediateop

031 2126 16

Target jump addressop

031 26

R-type

I-type

J-type

Why not?

Computer Architecture 27

rs rtop+funct rd shamt

031 20 15 510

rs rt Immediateop

031 2126 16

Target jump addressop

031 26

R-type

I-type

J-type

What is a good
compromise?

• Fixed length instructions ☺
32-bit irrespective of ops

• Fields are at the same or
almost same location

• All formats look similar

Computer Architecture 28

તમારો દિવસ શભુ રહે

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones on Silence
	Slide 3: Do not forget 32 MIPS registers only Register spilling 
	Slide 4: Quick recap
	Slide 5: Where else can we store?
	Slide 6: The loaded program
	Slide 7: Stack in MIPS (Grows downwards, High to Low)
	Slide 8: MIPS way of handling it: The Stack (part of DRAM, for each function call)
	Slide 9
	Slide 10: MIPS way of handling it: Before function call
	Slide 11: MIPS way of handling it: Function call is ON
	Slide 12: MIPS way of handling it: After the function call
	Slide 13: How to save and restore?
	Slide 14: Nested Functions (Remember main() is a function too )
	Slide 15: The final one: Frame pointer
	Slide 16: The final one: Frame pointer
	Slide 17: Try This Out! Discuss on Piazza
	Slide 18: For the Curious Ones (Beyond CS230)
	Slide 19: How to know what is what?
	Slide 20: PAUSE and SUMMARISE
	Slide 21: Why instruction decoding?
	Slide 22: Instruction received then what?
	Slide 23: Instruction Decoding
	Slide 24: 10K Feet View of MIPS encoding
	Slide 25: Good design demands good compromises
	Slide 26: Let’s have a look
	Slide 27: Why not?
	Slide 28: What is a good compromise?
	Slide 29: તમારો દિવસ શુભ રહે

