CS230: Digital Logic Design
and Computer Architecture

Lecture 8: MIPSInstructions contd...
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

Phones on Silence

If you are busy,

Then you may not consider
making others busy ©

DO not forget 32
MIPS registers only
Register spilling ®

cccccccccccccccccccc

Quick recap

Register spilling, 32 MIPS registers, nested functions,

oh no!

Spilled registers: Where else can we store?

Computer Architecture

Stack

Heap

Data

Text

The loaded program

System program that loads the
executable into the memory.

Every executable has a text,
heap/stack data segments

Stack in MIPS
(Grows

downwards,
High to Low)

$sp—= 7FFf FFfCpe,

$gp— 1000 8000,
1000 0000,

pc— 0040 0000pey
0

Stack

T

Dynamic data

Static data

Text

Reserved

MIPS way of handling it:
The Stack (part of DRAM, for each function call)

Stores caller data

l Stack grows down

Ssp (stack pointer) points to the address where stack ends
One per function, private memory area, else the same
problem @ Computer Architecture 8

Caller Save
If the caller uses
these register,

then the caller
must stave them
in case the callee
overwrites them.

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

| S0

Sat

Sv0

Svl

a0

Sal

Sa2

Sa3

Sto

Stl

St2

St3

St4

St5

St6

St7

Constant 0

Reserved Temp.

Return Values

Procedure
arguments

Caller Save
Temporaries:
May be
overwritten
by called
procedures

R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31

$s0

Ss1

Ss2

Ss3

S5

$s5

Ss6

Ss7
§t8

St9

SkO

Skl

Sgp

Ssp

Sra

Callee Save
Temporaries:
May not be
overwritten by
called pro-
cedures

Caller Save
Temp

Reserved for
Operating Sys
Global Pointer
Callee Save
Stack Pointer
Frame Pointer
Return Address

MIPS way of handling it: Before function call

SPp —

Caller

!

Computer Architecture

10

MIPS way of handling it: Function call is ON

Caller R1

Callee R2
Sp —*|Callee R4 Saved

!

Computer Architecture

Cd

PS way of handling it: After the function

Sp—

Caller R1

Computer Architecture

How to save and restore?

Caller R1
Save: Sp , |Callee R4
addi Ssp, Ssp, -4 Saved
32 bit registers, 4 bytes, one word, remember
sw R4, (Ssp)
Restore: sp — Caller R1
lw R4, (Ssp)
. Restored
addi Ssp, Ssp, 4

Nested Functions (Remember main() is a
function too ©)

CS230 // jal cs230

{
CS330 // jal cs330 !
{ \
CS430 // jal cs430
{
/i

Hir
M ir

.\

Computer Architecture

The final one: Frame pointer

Stack also stores local variables and data structures (local arrays and
structures) for a function along with the return address(es).

Frame pointer will get incremented and decremented based on the
local arguments used.

The final one: Frame pointer

Frame pointer: Points to local variables and saved registers. Points to

the highest address in the procedure frame. Stays there throughout the
procedure. Stack pointer, moves around.

fp - fp — | returns

fo —
Sp/ E— - > Sp/

Sp —| local

Awesomeness: You can access any using fp/sp and an offset

Computer Architecture 16

Try This Out! Discuss on Piazza

0
o
3
©
(=
(g
(1]
=
>
=
(@]
>
=
(1]
(@]
—
c
=
(0]

17

For the Curious Ones (Beyond CS230)

Stack buffer overflow - 101:
https://en.wikipedia.org/wiki/Stack buffer overflow

Nilabh ©

Computer Architecture

18

https://en.wikipedia.org/wiki/Stack_buffer_overflow

How to kno

what is wha

Computer Architecture

20

Why instruction decoding?

Based on PC

LOAD inst. from memory

Computer Architecture

s

21

Instruction received then what?

Remember instructions are of 32-bit size (in MIPS),
so PC+4

How will the processor know what to infer from these 32 bits?
Simple: Have a decoder ©

Instruction Decoding

31 26 21 16

op | rs r’g Immediate

\
5 bits, 32 registers 16 bit constant
(RO to R31)

6 bits, maximum 5 bits, 32 registers (RO to R31)
64 operations

add

sub

mul

lw

10K Feet View of MIPS encoding

op

I'S

rt

rd

shamt

funct

\

Why this field?
Wastage of space ®

Good desigh demands good compromises

Instruction |Format _lop rs _|rt _|rd _|shamt funct laddress _
add R 0 reg reg reg 0 32 n.a

sub R 0 reg reg reg 0 34 n.a.

addi I 8 reg reg n.a. n.a. n.a. constant
lw I 35 reg reg n.a. n.a. n.a. address
SW | 43 reg reg n.a. n.a. n.a. address

~ tells how to treat the last set of fields:
three fields or one field, still why funct ®

Let’s have a look

31 26 21 16 11 6

op | rs | rt | rd | shamt| funct
31 26 21 16

op | rs | rt Immediate
31 26

op

Target jump address

R-type

I-type

J-type

Why not?

31 20 15 10 5 0

op+funct| rs | rt rd | shamt R-type
31 26 21 16 0

op | rs | rt Immediate -type
31 26 0

op Target jump address J-type

What is a good

CO m p rO m | S e ? USRS T NIV IS e P e SRS == — = -

* Fixed length instruct;;’_
32-bit irrespective ofs: Tol

* All formats look sim{iosaK

\ A
A\

(.
3 A

S \ /
i N | ‘ A .

\ i b 'f
N £ 4

Bl et 9ot 28

-

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones on Silence
	Slide 3: Do not forget 32 MIPS registers only Register spilling 
	Slide 4: Quick recap
	Slide 5: Where else can we store?
	Slide 6: The loaded program
	Slide 7: Stack in MIPS (Grows downwards, High to Low)
	Slide 8: MIPS way of handling it: The Stack (part of DRAM, for each function call)
	Slide 9
	Slide 10: MIPS way of handling it: Before function call
	Slide 11: MIPS way of handling it: Function call is ON
	Slide 12: MIPS way of handling it: After the function call
	Slide 13: How to save and restore?
	Slide 14: Nested Functions (Remember main() is a function too )
	Slide 15: The final one: Frame pointer
	Slide 16: The final one: Frame pointer
	Slide 17: Try This Out! Discuss on Piazza
	Slide 18: For the Curious Ones (Beyond CS230)
	Slide 19: How to know what is what?
	Slide 20: PAUSE and SUMMARISE
	Slide 21: Why instruction decoding?
	Slide 22: Instruction received then what?
	Slide 23: Instruction Decoding
	Slide 24: 10K Feet View of MIPS encoding
	Slide 25: Good design demands good compromises
	Slide 26: Let’s have a look
	Slide 27: Why not?
	Slide 28: What is a good compromise?
	Slide 29: તમારો દિવસ શુભ રહે

