CS230: Digital Logic Design
and Computer Architecture

Lecture 9: Addressing Modes and ISA/Microarch.

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

Phones on Silence

If you are busy,

Then you may not consider
making others busy ©

Recap

R add $s1,9s2,9$s3
sub R 0 18 19 17 0 34 sub $s1,9s2,9s3
addi | 18 17 100 addi $s1,%52,100
Iw I 35 18 17 100 w $s1,100($s2)
SW | 43 18 17 100 sw $s1,100($s2)

S1, s2,and s3 are R17, R18, and R19, respectively.
For Iw/sw, the address of interest is address stored in s2 + 100

Computer Architecture 3

=
- ok SR AR AN WA W AR W W
s A v - ‘\‘ \‘ “ “ “ “

Y Ned

Five Common Addressing Modes

Immediate

op | rs | rt | Immediate

addi StO, St1, 5

Computer Architecture

Five Common Addressing Modes

Register

op | rs | rt | rd | funct

add StO, St1, SJZ

\Register

Five Common Addressing Modes

Base (Arrays, structures, pointers)

op | rs | rt Address

lw St1, 4(Ss2)

-+ —— |Register
lw St1, (Ss2) #indirect addressing

= Memory

Five Common Addressing Modes

PC-relative (e.g., conditional branches, need an offset)

op

'S

rt

Address

beqz $t0, goEnd

PC

Memory

Five Common Addressing Modes

Pseudodirect

jal

op

Address

»concat «—

PC

Memory

Computer Architecture

from () from () ()
4 bits 26 bits 2 bits

from the low order 26 bits of the jump instruction

jump instruction: [op | (word) address |
A 26
Y
branch address: [] lod
Y !
Y
g 2 32 »
d ' I
program counter: | | = /32 » memory
A

Revisiting ISA and
Microarchitecture

Microarchitecture (Not exposed to us)

* Implementation of an ISA

* Programmer cannot see/access it

ISA:

add instruction

Microarch:

Implementation of an adder (ripple carry)

ISA: What does it provide?
Opcodes,

Addressing Modes,

Instruction Types and Formats,
Registers

Access control: user/OS
Address space,

Addressability,
Alignment

ISA: What does it provide?

Instructions:
Opcodes,
Addressing Modes,

Instruction Types and Formats, _
ISA must satisfy the needs of the

Registers :
software: - assembler, compiler, OS,

Access control: user/0OS

Memory: Address space,
Addressability,
AI ign me nt Computer Architecture 14

Microarchitecture

Rest of C230 after ISA ©

Caches
Memory Controllers
Branch Predictors, Prefetchers, ...

Microarchitecture

Processor is in state S

Instruction
Processor moves to state SS

State

The information held in the processor at the end of an instruction to
provide the processing context for the next instruction.

Computer Architecture

ISA + Microarchitecture

Computer Architecture

18

Based on lectures so far

Hregisters

ficycles to access a register

#Width of the register (32/64 bit)

#instruction that uses register to access memory

#icycles to access memory

Based on lectures so far

tregisters: ISA

#cycles to access a register: Microarch.

#Width of the register (32/64 bit) : ISA

#Instruction that uses register to access memory: ISA
#icycles to access memory: Microarch.

x86: It has 128/256-bit registers and one-bit too ©

Where to place it?

* Closer to high-level language = Small semantic gap,
complex instructions

(CISC kinda? e.g. quicksort an instruction ©)

* Closer to hardware? - Large semantic gap, simple
instructions (RISC kinda?)

* Remember: Compiler+ISA defines app’s instruction count

And then the Debate of RISC vs CISC

RISC: Reduced Instruction Set of Computers
Very few simple instructions
Example: MIPS

CISC: Complex Instruction Set of Computers
Lots of complicated instructions
Example: x86 kind of © [x86 is CISC with RISC mysteries]

0
o
3
©
S
=g
1]
-
>
=
(@]
>
=
(1]
(@]
—
[
-
(0]

INTEL CONVERTS CISC ONES INTO RISC
ONES, AND GENERATE
MICROOPERATIONS.

INTELLIGENT CISC-RISC DECODER

CONSUMES AROUND 2% OF THE CHIP
AREA. GOOD OR BAD?

23

How Easy?

A billion-dollar idea ©

i) requires changes to microarchitecture.
i) requires changes to ISA.
iii) both (i) and (ii)

Think about the trade-offs ©
Does it affect the system stack?

The Other ISAs

VI: Arm, Qualcomm, btw ARM: Advanced RISC Machines ©

Samsung: Mobiles

= RISC-V: Open-source ISA, what does it mean?

26

RISC-V, opensource

@ Whatis the license model?

The RISC-V ISA is free and open with a permissive license for use by anyone in all types of implementations. Designers are free to develop proprietary or open

source implementations for commercial or other exploitations as they see fit. RISC-V International encourages all implementations that are compliant to the
specifications.

Note that the use of the RISC-V trademark requires a license which is granted to members of RISC-V International for use with compliant implementations. The
RISC-V specification is based around a structure which allows flexibility with modular extensions and additional custom instructions/extensions. If an
implementation was based on the RISC-V specification but includes modifications beyond this framework, then it cannot be referenced as RISC-V.

@ Does that mean free for industry to use and play with, but then we pay if we produce a product using this ISA?

The RISC-V ISA is free for product use too. Those who want to use the RISC-V logo should join RISC-V International (see question No. 1).

@ If our company builds a RISC-V implementation, is it required to release its source code for the RISC-V core?

No, the source code can be completely closed.

Computer Architecture 27

X36
Registers:
30336

For 64-bits, rax, rbx

(EA)(
0
% EBX
n
x
@ ECX
2 <
IE_ EDX
©
@
g ESI
\ EDI
ESP
(stack pointer)
EBP

(base pointer)

Computer Architecture

16 bits —

8 bits 8 bits
AX AH AL
BX BH BL
CX CH CL
DX DH DL
32 bits

28

Subtle Differences

* x86 arithmetic/logic instructions: one operand should act as both source
and destination

add Ss0, Ss1 // Add $sO and Ss1 and putitin $s0 ©

* One of the operands can be in memory:

wow (programmer) or oh no (instruction size ®) !!
add SsO, Mem[Ss1] ©

* No more fixed-length instructions & can be 4/8/X bytes
Why?

Fixed Width or Variable Width

Variable: No fixed size
6 bytes for add, 2 bytes for load
Smaller code footprint (compact)

Fixed:

4 bytes for all, Larger code footprint, simple decoding

/ =

Fallacies

CISC instructiof
provide highef'
performance

Assembly
codes pra
performa

Computer Architecture

Coffee Credits

Dhananjay: +1
Yashwant: +2

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones on Silence
	Slide 3: Recap
	Slide 4: Addressing Modes (How and where to find the data)
	Slide 5: Five Common Addressing Modes
	Slide 6: Five Common Addressing Modes
	Slide 7: Five Common Addressing Modes
	Slide 8: Five Common Addressing Modes
	Slide 9: Five Common Addressing Modes
	Slide 10: Example
	Slide 11: Revisiting ISA and Microarchitecture
	Slide 12: Microarchitecture (Not exposed to us)
	Slide 13: ISA: What does it provide?
	Slide 14: ISA: What does it provide?
	Slide 15: Microarchitecture
	Slide 16: Microarchitecture
	Slide 17: State
	Slide 18: Computer Architecture
	Slide 19: Based on lectures so far
	Slide 20: Based on lectures so far
	Slide 21: Where to place it?
	Slide 22: And then the Debate of RISC vs CISC
	Slide 23: Mystery
	Slide 24: How Easy?
	Slide 25: The Other ISAs
	Slide 26: World of ISAs
	Slide 27: RISC-V, opensource
	Slide 28: x86 Registers: 80386 For 64-bits, rax, rbx
	Slide 29: Subtle Differences
	Slide 30: Fixed Width or Variable Width
	Slide 31: Fallacies
	Slide 32: Coffee Credits
	Slide 33: మంచి రోజు

