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Instructions

Programmers’ order/command to the processor 
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World of 18 instructions
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A n Add the number in storage location n into the accumulator. 
E n If the number in the accumulator is greater than or equal to 
zero execute next the order which stands in storage location n; 
otherwise proceed serially. 
Z Stop the machine and ring the warning bell. 

Wilkes and Renwick Selection from the List of 18 Machine 
Instructions for the EDSAC (1949)



2021: How many x86 instructions? Piazza 
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Why Instructions?
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Programmer knows what it can/cannot
Processor knows what it should

Power of abstraction:
World with no instructions: 
Programmers – communicate a sequence of 0s and 1s 



World with no instructions
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000000 00000 00000 00010 00000 100101 
000000 00000 00101 01000 00000 101010 
000100 01000 00000 00000 00000 000011 
000000 00010 00100 00010 00000 100000 
001000 00101 00101 11111 11111 111111 
000010 00000 10000 00000 00000 000001



Last Lecture
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Costly DRAM 
accesses

Costly: 100 timesC
o

re

South pole 

32-bit Address

Data

GBs DRAM

Registers

Registers are limited



Let’s Open the Processor Core 
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Register 0

Register 1

Register 2

Register 3



Let’s Open the Processor Core 
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Let’s put the Memory (not inside the core)
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Let’s put the Memory (not inside the core)
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Register 0
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Register 3
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MIPS Instructions: 101

add $0, $1, $2

add: operation,  $0: Destination,  $1 & $2: Source(s) 
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Most of the arithmetic/logical: two sources and one destination



What to do for “a=b+c-d”?  
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What to do for “a=b+c-d”? 

add $t0, $s1, $s2       #$t = b+c

sub $s0, $t0, $s3        #$s = $t-d

Temporary register

Try out: 

f=(g+h) – (i+j)
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Constants and Immediate 

x=x+10

addi $s0, $s0, 10               

i: immediate, for constants, constant: 2s complement 
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No need of a register



Constants and Immediate 

x=x+10

addi $s0, $s0, 10               

i: immediate, for constants 

constant: 16 bits, 2s complement form 
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No need of a register

Do we need a subi ? ☺



Constants and Immediate 

x=x+10

addi $s0, $s0, 10               

i: immediate, for constants, constant: 2s complement form 
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No need of a register

Do we need a subi ? ☺ NO 



Special treatment for zero

$0 or $zero is a special register that contains ZERO

a=b   becomes add $s1 $s2 $zero
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Why add if we can move?



Pseudo Instruction 101 

a=b 

move $S0, $s1 
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Not an actual instruction. 
It is used for programming convenience 



Logical Operations

Bitwise operations and shifts (Refer Section 2.6 P&H)
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sll, srl, and, or, nor, andi, ori etc

No not instruction ☺, well not is nor with one operand=0  

32 raw bits instead of a 32-bit number. 



Trivia? How to store a 32-bit constant into a 
32-bit register? 

For example, 10101010 10101010 11110000 11110000
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Trivia? How to store a 32-bit constant into a 
32-bit register? 

For example, 10101010 10101010 11110000 11110000

lui $t0, 0xAAAA  #1010101010101010, lower bits all 0s. 

ori $t0, $t0, 0xF0F0 #1111000011110000
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Thanks 
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