
https://www.cse.iitb.ac.in/~biswa/

CS305: Computer Architecture
World of Instructions-I (The MIPS language)

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/

Instructions

Programmers’ order/command to the processor

Computer Architecture 2

World of 18 instructions

Computer Architecture 3

A n Add the number in storage location n into the accumulator.
E n If the number in the accumulator is greater than or equal to
zero execute next the order which stands in storage location n;
otherwise proceed serially.
Z Stop the machine and ring the warning bell.

Wilkes and Renwick Selection from the List of 18 Machine
Instructions for the EDSAC (1949)

2021: How many x86 instructions? Piazza

Computer Architecture 4

Why Instructions?

Computer Architecture 5

Programmer knows what it can/cannot
Processor knows what it should

Power of abstraction:
World with no instructions:
Programmers – communicate a sequence of 0s and 1s

World with no instructions

Computer Architecture 6

000000 00000 00000 00010 00000 100101
000000 00000 00101 01000 00000 101010
000100 01000 00000 00000 00000 000011
000000 00010 00100 00010 00000 100000
001000 00101 00101 11111 11111 111111
000010 00000 10000 00000 00000 000001

Last Lecture

Computer Architecture 7

Costly DRAM
accesses

Costly: 100 timesC
o

re

South pole

32-bit Address

Data

GBs DRAM

Registers

Registers are limited

Let’s Open the Processor Core

Computer Architecture 8

Register 0

Register 1

Register 2

Register 3

Let’s Open the Processor Core

Computer Architecture 9

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

Let’s put the Memory (not inside the core)

Computer Architecture 10

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit Bus

Let’s put the Memory (not inside the core)

Computer Architecture 11

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

Address Bus

Data Bus

MIPS Instructions: 101

add $0, $1, $2

add: operation, $0: Destination, $1 & $2: Source(s)

Computer Architecture 12

Most of the arithmetic/logical: two sources and one destination

What to do for “a=b+c-d”?

Computer Architecture 13

What to do for “a=b+c-d”?

add $t0, $s1, $s2 #$t = b+c

sub $s0, $t0, $s3 #$s = $t-d

Temporary register

Try out:

f=(g+h) – (i+j)

Computer Architecture 14

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants, constant: 2s complement

Computer Architecture 15

No need of a register

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants

constant: 16 bits, 2s complement form

Computer Architecture 16

No need of a register

Do we need a subi ? ☺

Constants and Immediate

x=x+10

addi $s0, $s0, 10

i: immediate, for constants, constant: 2s complement form

Computer Architecture 17

No need of a register

Do we need a subi ? ☺ NO

Special treatment for zero

$0 or $zero is a special register that contains ZERO

a=b becomes add $s1 $s2 $zero

Computer Architecture 18

Why add if we can move?

Pseudo Instruction 101

a=b

move $S0, $s1

Computer Architecture 19

Not an actual instruction.
It is used for programming convenience

Logical Operations

Bitwise operations and shifts (Refer Section 2.6 P&H)

Computer Architecture 20

sll, srl, and, or, nor, andi, ori etc

No not instruction ☺, well not is nor with one operand=0

32 raw bits instead of a 32-bit number.

Trivia? How to store a 32-bit constant into a
32-bit register?

For example, 10101010 10101010 11110000 11110000

Computer Architecture 21

Trivia? How to store a 32-bit constant into a
32-bit register?

For example, 10101010 10101010 11110000 11110000

lui $t0, 0xAAAA #1010101010101010, lower bits all 0s.

ori $t0, $t0, 0xF0F0 #1111000011110000

Computer Architecture 22

Thanks

Computer Architecture 23

