CS305: Computer Architecture

The Iron Law
https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

Performance: Time (Iron Law)

Time/Program $=$

Instructions/program X cycles/instruction X Time/cycle

Source code
Compiler
ISA

ISA
microarch.
microarch. technology

Performance: Time (Iron Law)

Time/Program $=$

Instructions/program X cycles/instruction X Time/cycle

Source code
Compiler
ISA

ISA
microarch.
microarch. technology

Performance: Time (Iron Law)

Time/Program =

Instructions/program X cycles/instruction X Time/cycle
($\Sigma \operatorname{IC}(\mathrm{i}) \times \mathrm{CPI}$ (i)) X Time/cycle

Example

Program p = one billion instructions
Processor takes one cycle per instruction
Processor clock is 1 GHz

CPU time $=10^{9}$ instructions $\times 1$ cycle/instruction $\times 1$ ns
= 1 second

Example

Program $\mathrm{p}=$ one billion instructions
Processor takes one cycle per instruction
Processor clock is 4 GHz

CPU time $=10^{9 \text { instructions }} \mathrm{X} 1$ cycle/instruction $\times 1 / 4 \mathrm{~ns}$ $=0.25$ second (4X faster)

Example

Program $\mathrm{p}=$ one billion instructions
Processor processes 10 instructions in one cycle
Processor clock is 4 GHz

CPU time $=10^{9}$ instructions $\times 0.10$ cycle/instruction $\times 1 / 4 \mathrm{~ns}$
 $=0.025$ second (40X faster)

Example (Role of compiler/programmer)

Program p = one million instructions
 Processor processes 1 instruction in one cycle
 Processor clock is 4 GHz

CPU time $=10^{6 \text { instructions }} \times 1$ cycle/instruction $\times 1 / 4 \mathrm{~ns}$ $=0.00025$ second (4000X faster)

A bit deeper
Program p has 10 billion instructions

* 2 billion branches (CPI of 4)
* 3 billion Loads (CPI of 2)
* 1 billion Stores (CPI of 3)
* Rest 4 billion, arithmetic instructions (CPI of 1)

Clock rate 4 GHz , What is the execution time?

Which one ?

Processor IMTEL: CPI 2, Clock rate 2 GHz
Processor AND: CPI 1, Clock rate 1GHz

Assume compiler/ISA/... are the same.

IMTEL: $2 \times 0.5 \mathrm{~ns}=1 \mathrm{~ns}$ per instruction
AND: $1 \mathrm{X} 1 \mathrm{~ns}=1 \mathrm{~ns}$ per instruction ©

Merci

