

CS305: Computer Architecture

Empirical Evaluation-II

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

Evaluation

To compare Processor A with Processor B by running programs

How many programs?

• The programs that you care.

 What if I want to build a new one (processor, caches, DRAM)?

World of Benchmarks

SPEC CPU 2017 (https://www.spec.org/cpu2017/)

The **SPEC CPU® 2017** benchmark package contains SPEC's next-generation, industry-standardized, CPU intensive suites for measuring and comparing compute intensive performance, stressing a system's processor, memory subsystem and compiler.

SPECspeed: used for comparing time for a computer to complete single tasks

SPECrate: measure the throughput or work per unit of time.

World of Benchmarks

CloudSuite (https://www.cloudsuite.ch/)

CloudSuite is a benchmark suite for cloud services. The benchmarks are based on real-world software stacks and represent real-world setups.

PARSEC (https://parsec.cs.princeton.edu/)

Benchmark suite composed of multithreaded programs. The suite focuses on emerging workloads and was designed to be representative of next-generation shared-memory programs for chip-multiprocessors.

World of Benchmarks

MobileBench

(https://mobilebench.engineering.asu.edu/)

comprising a selection of representative smart phone applications.

Many more application domain specific: Graph processing, ML perf,

Pitfalls of Benchmarks

Benchmark not representative of all

Your workload is I/O bound \rightarrow SPECCPU is useless

Benchmark is too old

Need to be periodically refreshed

Non-benchmarks

Application kernels: A small code fragment or part of the program

Synthetic benchmark: Not part of any real program!!

Micro-benchmark

• OK! So, I will create a chip and then evaluate these benchmarks

World of Simulators

• Functional Simulator: Used to verify the correct execution of the program. Can not be used for performance evaluation.

- Performance simulators:
- (i) Trace-driven: ChampSim (https://github.com/ChampSim/ChampSim)
- (ii) Execution-driven: gem5, Multi2sim

Functional simulator is part of the performance simulators.

Evaluation Continued

Pick a relevant benchmark suite

Measure IPC of each program

Summarize the performance using:

Arithmetic Mean (AM)

Geometric Mean (GM)

Which one to choose?

Harmonic Mean (HM)

Example

IMTEL ABM AND 20 30 App. one 10 30 40 App. two 20 App. three 40 10 30

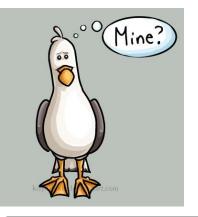
Which machine performs better over IMTEL and why?

Contd.

ABM AND 2 App. one 3 1.5 App. two

App. three 1.3 0.3

1.76 1.60 A.M.


1.57 1.21 G.M.

1.54 0.72 H.M.

AM on ratios

	Χ		Υ		
App. 1	1		100		
App. 2	1000		10		
Normalized to X		X		Υ	
App. 1		1		100	
App. 2		1		0.01	
AM		1		50.005	
Normalized to Y		X		Υ	
App. 1		0.01		1	
App. 2		100		1	
AM		50.005		1	

Y is 50 times faster than X

X is 50 times faster than Y

Nandi