

CS305: Computer Architecture

Instruction Pipeline Hazards

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

Structural/Data/Control Hazards

What is a hazard? Anything that prevents an instruction to move ahead in the pipeline.

Structural: Resource conflicts, two instructions want to access the same structure on the same clock cycle.

Computer Architecture

An Example with unified (single) memory

What about registers?

Can read/write the register file (same register) in same clock cycle

Remember: Edgetriggered

Structural hazards are highly infrequent

Data Hazards

Instruction depends on the result (data) of previous instruction(s).

Hazards happen because of data dependences.

Data dependences (hazards)

```
add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
```

read-after-write
(RAW)
True dependence

Data dependences (hazards)

```
add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
```

read-after-write (RAW) True dependence

```
add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3
```

write-after-read (WAR) anti dependence

Data dependences (hazards)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

read-after-write
(RAW)
True dependence

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

write-after-read (WAR) anti dependence

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

write-after-write
(WAW)
output dependence

Read-After-Write (RAW)

Read must wait until earlier write finishes

Anti-Dependence (WAR)

Data Hazards

Write must wait until earlier read finishes

Output Dependence (WAW)

• Earlier write can't overwrite later write (WAW hazard: not possible with vanilla 5stage pipeline)

Computer Architecture

Data Hazards (Examples)

Time (clock cycles)

```
DMem
     add r1,r2,r3
                              Ifetch
n
S
t
                                                         TDMem
     sub r4,r1,r3
r.
     and r6,r1,r7
0
r
          r8,r1,r9
d
e
     xor r10,r1,r11
                                Computer Architecture
```


An Example

10: beq r1,r3,36 14: and r2,r3,r5 ⊗ 18: or r6,r1,r7 ⊗ 22: add r8,r1,r9 ⊗

50: xor r10,r1,r11

What do you do with the 3 instructions in between? How do you do it?

Computer Architecture

What happens on a hazard?

Instruction cannot move forward Instruction must wait to get the hazard resolved.

The pipeline must stall ☺ It is like air bubbles in pipelines

Stall/Bubble

Time (clock cycles)

De-assert all control signals

How to implement a stall?

Don't fetch a new instruction and don't change the PC insert a nop in the IR (Compiler way of doing things)

Computer Architecture

An example of an NOP

sll \$0 \$0 (in MIPS)

Simple Example (no bubbles)

Computer Architecture

Simple Example (2 bubbles)

Control Hazard and NOPs

```
time
                                                      t4 t5 t6 t7
                            t0
                                          t2
                                                 t3
                                   t1
(I_1) 096: ADD
                                   ID<sub>1</sub> EX<sub>1</sub> MA<sub>1</sub> WB<sub>1</sub>
(I_2) 100: J 200
                                   IF<sub>2</sub> ID<sub>2</sub> EX<sub>2</sub> MA<sub>2</sub> WB<sub>2</sub>
(I_3) 104: ADD
                                          IF<sub>3</sub> *nop nop nop nop
(I_4) 304: ADD
                                                  IF<sub>4</sub> ID<sub>4</sub> EX<sub>4</sub> MA<sub>4</sub> WB<sub>4</sub>
                            time
                                          t2 t3 t4 t5 t6 t7 ....
                                   t1
                     IF
                                   I_2
                                       I_3
                     ID
                                          I_2
                                               \mathsf{nop}\ \mathsf{I}_4 \quad \mathsf{I}_5
Resource
                     EX
                                                 I_2 nop I_4 I_5
Usage
                                                         I_2 nop I_4
                     MA
                     WB
                                                                I_2
                                                                       nop I_4
                                                                  nop ⇒ pipeline bubble
```

What happens to the speedup?

Ideal CPI=1, assume stages are perfectly balanced

Pipeline hazards: Data and control are the main concerns

Summary

Hazards introduce stalls

Stalls affect speedup, Usage of NOPs (compiler's way of stalling)

Dankie