) cAsPER

CS305: Computer Architecture

Instruction Pipeline Hazards
https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/

https://www.cse.iitb.ac.in/~biswa/

Structural/Data/Control
Hazards

What is a hazard ? Anything that prevents an
instruction to move ahead in the pipeline.

Structural: Resource conflicts, two instructions
want to access the same structure on the same
clock cycle.

Computer Architecture 2

An Example with unified (single) memory

Load
Instr 1 Can’t read same
memory twice in
Instr 2
same clock cycle
Instr 3
vInstr 4

Computer Architecture 3

What about registers?
A S Can read/write the

Load L register file (same
Instr 1 register) in same
clock cycle
Instr 2
Instr 3 . Remember: Edge-
Vinstr 4 ree] triggered

Structural hazards are highly infrequent
Computer Architecture 4

Data Hazards

O

O

Instruction depends on the Hazards happen because
result (data) of previous of data dependences.
instruction(s).

Computer Architecture 5

Data dependences (hazards)

add IL\RZ,AR3

sub R2, R4, R1

or R1, R6, R3

read-after-write

(RAW)
True dependence

Computer Architecture

Data dependences (hazards)

add II,\RZ,AR3 add RyRZ, R3

sub R2, R4, R1 sub R2, R4, R1

or R1, R6, R3 or R1, R6, R3

read-after-write write-after-read

(RAW) (WAR)
True dependence anti dependence

Computer Architecture

Data dependences (hazards)

add IL\RZ,AR3

sub R2, R4, R1

or R1, R6, R3

read-after-write

(RAW)
True dependence

add R1, R2,R3

/

sub R2, R4, R1

or R1, R6, R3

write-after-read
(WAR)
anti dependence

Computer Architecture

add R1,R2,R3

sub R2, R4, R1

v
or R1, R6, R3

write-after-write
(WAW)

output dependence

Read-After-Write (RAW)
e Read must wait until earlier write finishes

Anti-Dependence (WAR)
e Write must wait until earlier read finishes

Data Hazards

e Qutput Dependence (WAW)
e Earlier write can’t overwrite later write
(WAW hazard: not possible with vanilla 5'
stage pipeline) /
> 4

Computer Architecture = 9

S ~4~ h 3 ~

= m Q S O

Data Hazards (Examples)

Time (clock cycles)

add r1,r2,r3

sub rd,r1,r3
and r6,rl,r7

or r8,rl,r9

, xor rl10,rl,r11

Ifetch

Ifetch

Computer Architecture

L

DMem

1
ALU ‘
|
L] 1

Control
Hazards

Hazards that arise from branch/jump instructions
| and any instructions that change the PC
. Computer Architecture 11

An Example

1|O: beqrl,r3,36

14: and r2,r3,r5 ®
18: 0or r6,r1,r7 ®

22:add r8,r1,r9 ®

}
50: xorr10,rl,r11

st
L

Ifetch

Ifetch

H s

|t

]
G

v ®

What do you do with the 3 instructions in between?

How do you do it?

Computer Architecture

DMem

12

What happens on a hazard?

nstruction cannot move forward

nstruction must wait to get the
nazard resolved.

The pipeline must stall ®
It is like air bubbles in pipelines

Computer Architecture 13

I +0 S N

S0 30

'

Stall/Bubble

Time (clock cycles)

De-assert all control signals

Load

Instr 1

Instr 2
Stall

Instr 3

Cycle 1 | Cycle 2

Ifetch

Ifetch

£

i Cycle 3 !

Cycle 4 :

p—

Ifetch

Cycle 5 :

DMem

Ifetch

=

Cycle 6

Cycle 7

| CompUter Architecture

14

How to implement a stall?

t < stall?
|
nop

A

vV we
»irsl

we *rs2
ey PC addr » rd1 ¥ 7Ne
rdata| ™ < = WS AL —addr
—* wd rd2 >
Memory; — : - ? }
Memory
wdata Imm >
' I‘ Evt » Wdata
. fetch
.~ phase

execute phase
Don’t fetch a new instruction and don’t change the PC

insert a nop in the IR (Compiler way of doing things)

Computer Architecture

An example of an NOP

sll SO SO (in MIPS)

Computer Architecture

16

addr3,r2, rl

add r6, r5, r4

Simple Example Foion e oo o o o
(no bubbles)

IF1 ID1 IE1 M1 |WB1

IF2 ID2 [E2 IM2 [IWB2

C ter Architect 17
omputer Architecture v

addr3,r2, rl

add r6, r5, r3

Simple Example [l e o0 o o) G
(2 bubbles)

IF1 ID1 IE1 IM1 IWB1

IF2 ID2 ID2 ID2 IE2 IM2 IWB2

Computer Architecture 18

Control Hazard and NOPs

(1) 100: J 200
(1) 104: ADD
304: ADD

Resource
Usage

IF
ID
EX
MA
WB

time
t0

time
t0

t1

IF,

t1

t2

ID,
IF,

t2
I3

t3 t4 t5 t6 t7

EX, MA, WB,
nop nop nop nop

nop Ic
I, nop I, Is
I, nop I
I, nop Ic

nop = pipeline bubble

Computer Architecture

19

What happens to the speedup?

Speedup = CPl unpipelined = CPl unpipelined

CPI pipelined ideal CPI + stalls/instructions

ldeal CPI=1, assume stages are perfectly balanced

Computer Architecture 20

Pipeline hazards: Data and
control are the main concerns

Summary Hazards introduce stalls

Stalls affect speedup, Usage of
NOPs (compiler’s way of stalling)

Computer Architecture 21

Dankie

Computer Architecture

22

