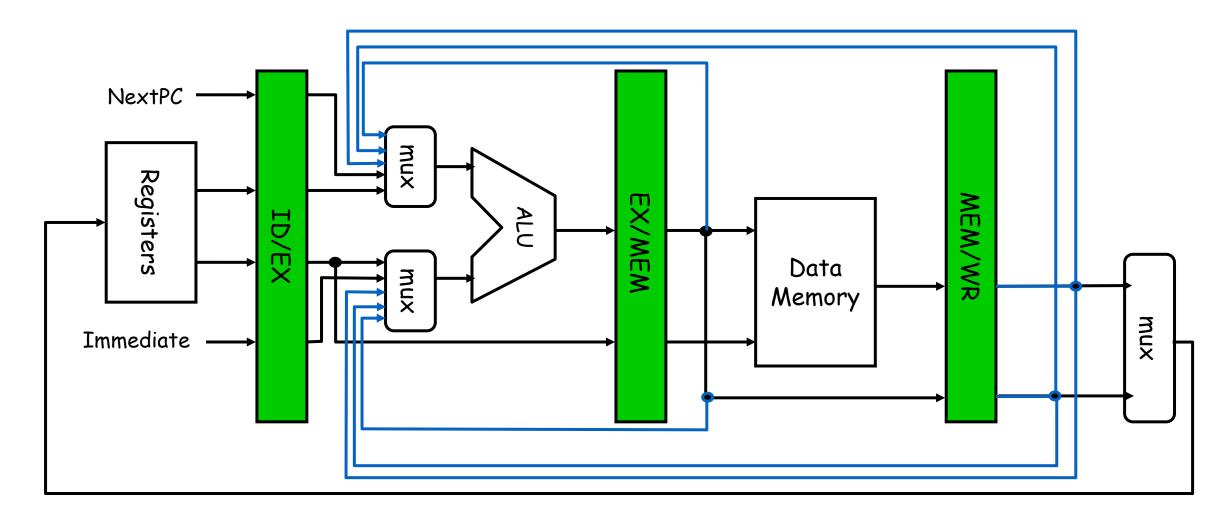


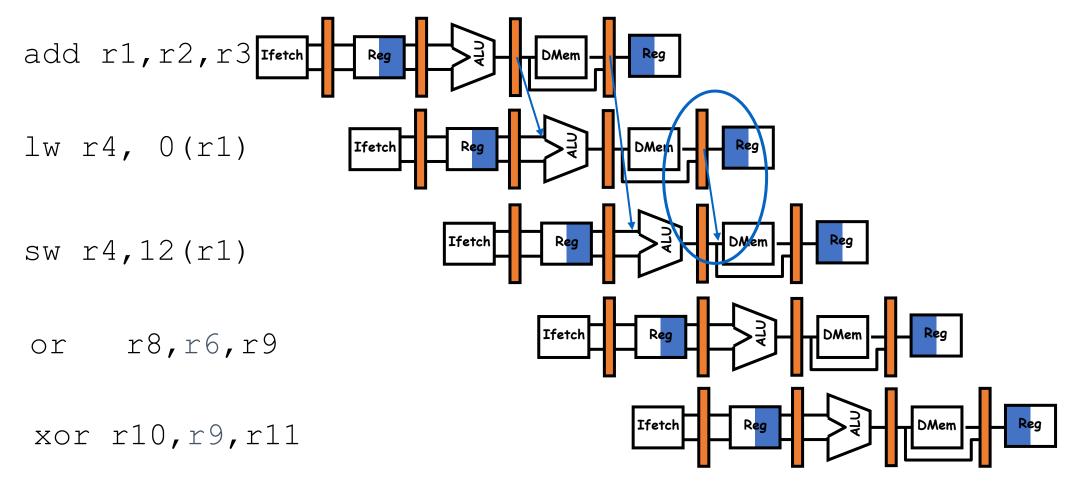
CS305: Computer Architecture Pipeline Hazards: Mitigations

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

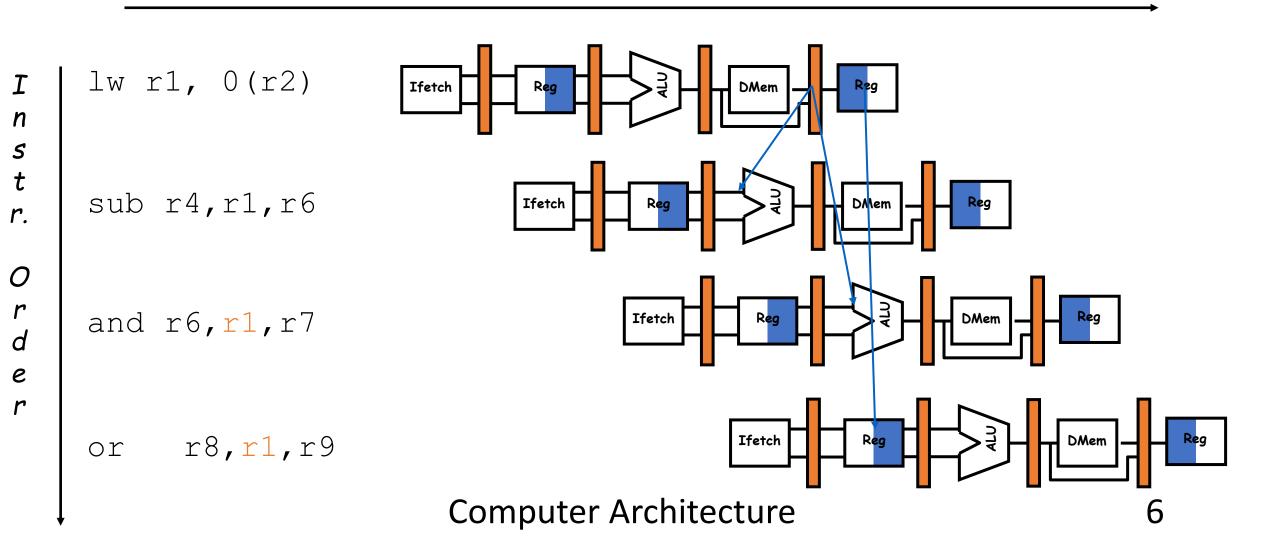
https://www.cse.iitb.ac.in/~biswa/


Data Hazard Detector and stalls

- Execute to decode:
- EX/MEM.RegisterRd = ID/EX.RegisterRs
- EX/MEM.RegisterRd = ID/EX.RegisterRt
- Memory to decode:
- MEM/WB.RegisterRd = ID/EX.RegisterRs
- MEM/WB.RegisterRd = ID/EX.RegisterRt
- what about instructions do not write into the registers?


Route data as soon as possible after it is calculated to the earlier pipeline stage

Bypassing/forwarding: Updated Datapath


How does it help?

Time (clock cycles)

Does it help always?

Time (clock cycles)

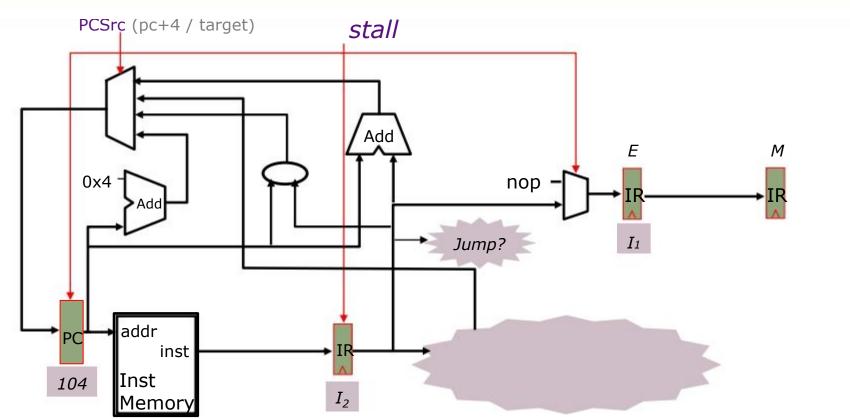
Bypassing: Visualizing Pipeline									
time							t6	t7	
$(I_1) r1 \leftarrow r0 + 10$	IF_1	ID_1	EX	MA_1	₩B ₁ -				
$(I_2) r4 \leftarrow r1 + 17$		IF_2	ID ₂	ID_2	ID_2	EX ₂	MA_2	WB_2	
(I ₃)			IF ₃	IF_3	IF_3	ID_3	EX_3	MA_3	WB_3
(I_4)						-			
(I ₅)									

Each stall or kill introduces a bubble $\Rightarrow CPI > 1$

When is data actually available? At Execute

A new datapath, i.e., *a bypass*, can get the data from the output of the ALU to its input. Note that bypassing does not mitigate control hazards Computer Architecture 7

What and Where? Control Hazard


What do we need to calculate next PC?

- For Jumps
 - Opcode, offset, and PC
- For Jump Register
 - Opcode and register value
- For Conditional Branches
 - Opcode, offset, PC, and register (for condition)
- For all others
 - Opcode and PC

In what stage do we know these?

- PC Fetch
- Opcode, offset Decode (or Fetch?)
- Register value Decode
- Branch condition ((rs)==0) Execute (or Decode?)

Speculate, PC=PC+4

I_1	096	ADD
I ₂	100	J304
I3	-104	ADD-
I4	304	ADD

What happens on mis-speculation, i.e., when next instruction is not PC+4? *kill How? Insert NOPs*

Conditional branches

I1096ADDI2100BEQZ r1 200I3104ADDI4304ADD

Instructions between a branch instruction and the target are in the wrong-path if the branch is not taken

Again (stalls/NOPs)

time t0 t1 t2 t3 t4 t5 t6 t7 (I₁) 096: ADD IF₁ ID_1 EX1 MA1 WB1 ID₂ EX₂ MA₂ WB₂ (I₂) 100: BEQZ 200 IF₂ IFз (I₃) 104: ADD ID₃ nop nop nop 108: (I4) IF₄ nop nop nop nop 304: ADD (I_5) IF₅ ID₅ EX₅ MA₅ WB₅

time t5 t0 t1 t3 t4 t6 t7 t2 IF I1 I₂ Iз \mathbf{I}_4 **I**5 ID I1 nop I₅ **I**2 Iз Resource ΕX I1 **I**2 nop nop I5 Usage MA I1 **I**2 nop nop I5 WB I1 **I**2 nop nop I₅

Branches: Taken/Not Taken and Target

Instruction

Taken known?

Target known?

After Inst. Decode After Inst. Decode

BEQZ/BNEZ After Inst. Execute After Inst. Execute what action should be taken in the decode stage? Can we add an ALU in the decode stage? Computer Architecture 12

Branches: Taken/Not Taken and Target

Instruction

Taken known?

Target known?

After Inst. Decode After Inst. Decode

BEQZ/BNEZ

After Inst. Decode After Inst. Execute

Assumption that the decode stage has an ALU (comparator)

