
https://www.cse.iitb.ac.in/~biswa/

CS305: Computer Architecture
Caches-I

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/

World with no caches

Computer Architecture 2

Costly DRAM
accesses

200 to 300 cyclesC
o

re

Minimizing costly DRAM accesses
is critical for performance

South pole 

North pole 

32-bit Address

Data

4 GB DRAM

Remember Latency and Bandwidth

Computer Architecture 3

C
o

re Latency

Bandwidth

Latency 

Computer Architecture 4

Bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is
fixed – you can’t bribe God

Why access memory?

Computer Architecture 5

200
Cycles

D
R

A
M

 C
o

n
tr

.

C
o

re

CPU

Memory stores CODE and DATA
Processor accesses for LOADs (reads) and STOREs(writes)
Memory Wall: Grandmother of all the walls ☺

Do not ignore the common case mantra

Computer Architecture 6

Reduction in DRAM accesses ~ Improvement in execution time

WRONG!
▪ First Law of Performance:

Make the common case fast

What if your program is not memory intensive

Let’s look at the Applications (benchmarks)

Computer Architecture 7
Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)
Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Oh Yes locality

Computer Architecture 8

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual

Memory. IBM Systems Journal 10(3): 168-192 (1971)
Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Few Examples

Computer Architecture 9

Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

Caching: 10K Feet View

Computer Architecture 10

Costly DRAM
accesses

200 to 300 cyclesC
o

re
North pole ☺

Address

Data

$
 Address

Data

Caching is a speculation technique ☺
Works – if locality

How big/small?

Computer Architecture 11
$

$

C
o

re

Latency: low
Area: low
Capacity: low

Latency: high
Area: high
Capacity: high

Computer Architecture 12

1K Feet View of an O3 core: A bit Deeper

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD 

3. LOAD 
4. LOAD 
5. MUL

2. SUB 

DRAM: 300 cycles

300 cycles
300 cycles

1 cycle ☺

2 cycles ☺

Bottleneck

Processor core says all LOADs should take one cycle. Ehh!

Impact of one DRAM access

Computer Architecture 13

1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)

Impact of one DRAM access

Computer Architecture 14

1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)

#instructions can get executed during one DRAM
access: 1600 

Cache with latency

Computer Architecture 15

Costly DRAM
accesses

200 to 300 cyclesC
o

re

South pole ☺

North pole ☺

Address

Data: 1 cycle

$
 Address

Data

32 to 64KB $ will be available in one
to four cycles 

Cache hierarchy with latency

Computer Architecture 16

C
o

re

South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$

$

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs

Cache hierarchy with latency

Computer Architecture 17

C
o

re

South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$

$

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs

How many levels ?

Total latency < DRAM latency

Takeaway

Computer Architecture 18

L1 $

L2 $

L3 $

Latency and bandwidth (multiple ports)

Takeaway

Computer Architecture 19

L1 $

L2 $

L3 $

Latency and bandwidth (multiple ports)

Latency

Takeaway

Computer Architecture 20

L1 $

L2 $

L3 $

Latency and bandwidth (multiple ports)

Latency

Capacity

Ďakujem

Computer Architecture 21

