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World with no caches
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Costly DRAM 
accesses

200 to 300 cyclesC
o

re

Minimizing costly DRAM accesses 
is critical for performance

South pole 

North pole 

32-bit Address

Data

4 GB DRAM



Remember Latency and Bandwidth
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Latency 
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Bandwidth problems can be cured with money. 
Latency problems are harder because the speed of light is 
fixed – you can’t bribe God



Why access memory?
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CPU 

Memory stores CODE and DATA
Processor accesses for LOADs (reads) and STOREs(writes)
Memory Wall: Grandmother of all the walls ☺



Do not ignore the common case mantra
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Reduction in DRAM accesses ~ Improvement in execution time

WRONG!
▪ First Law of Performance:

Make the common case fast

What if your program is not memory intensive 



Let’s look at the Applications (benchmarks)
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Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 

Memory. IBM Systems Journal 10(3): 168-192 (1971)
Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t 
p

e
r 

ac
ce

ss
)



Oh Yes locality
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Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 

Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Spatial
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Temporal
Locality



Few Examples
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Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine 
call

subroutine 
return

argument access

scalar accesses



Caching: 10K Feet View
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Costly DRAM 
accesses

200 to 300 cyclesC
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re
North pole ☺

Address

Data

$
 Address

Data

Caching is a speculation technique ☺
Works – if locality  



How big/small?
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$
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Latency: low
Area: low
Capacity: low

Latency: high
Area: high
Capacity: high
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1K Feet View of an O3 core: A bit Deeper 

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD 

3. LOAD 
4. LOAD 
5. MUL

2. SUB 

DRAM: 300 cycles

300 cycles
300 cycles 

1 cycle ☺

2 cycles ☺

Bottleneck

Processor core says all LOADs should take one cycle. Ehh!



Impact of one DRAM access
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1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)



Impact of one DRAM access
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1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)

#instructions can get executed during one DRAM 
access: 1600 



Cache with latency
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Costly DRAM 
accesses

200 to 300 cyclesC
o
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South pole ☺

North pole ☺

Address

Data: 1 cycle

$
 Address

Data

32 to 64KB $ will be available in one 
to four cycles 



Cache hierarchy with latency
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South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$
 

$
 

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs



Cache hierarchy with latency
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South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$
 

$
 

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs

How many levels ?

Total latency < DRAM latency 



Takeaway
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L1 $ 

L2 $ 

L3 $ 

Latency and bandwidth (multiple ports)



Takeaway

Computer Architecture 19

L1 $ 

L2 $ 

L3 $ 

Latency and bandwidth (multiple ports)

Latency



Takeaway
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L1 $ 

L2 $ 

L3 $ 

Latency and bandwidth (multiple ports)

Latency

Capacity



Ďakujem
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