
https://www.cse.iitb.ac.in/~biswa/

CS305: Computer Architecture
Caches-IV

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/


The Implications of L1-D Hit rate of 100%

Computer Architecture 2

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD 

3. LOAD 
4. LOAD 
5. MUL

2. SUB 

DRAM: 300 cycles

L3 Cache: 30 cycles
L1 Cache: 5 cycles ☺

1 cycle ☺

2 cycles ☺

Bottleneck



A Dreamy World

Computer Architecture 3

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD ☺

3. LOAD ☺
4. LOAD ☺
5. MUL☺

2. SUB ☺

L1 Cache: 5 cycles ☺

L1 Cache: 5 cycles ☺
L1 Cache: 5 cycles ☺

1 cycle ☺

2 cycles ☺

Yippee



L1 Data Cache

Pipelined : For high bandwidth 

Simple (low-associative): 

For fast hit time 

Victim Cache: 

How to combine fast hit time 

yet still avoid conflict misses? 

Keep the discarded data

Computer Architecture 4

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator



L1 Instruction Cache

Computer Architecture 5

Key Idea: Special instruction cache that packs multiple non-
contiguous basic blocks into one contiguous trace cache line

Single fetch brings in multiple basic blocks
Trace cache indexed by start address and next n branch predictions
BTW, BTB is nothing but a cache of target addresses. 

BR BR BR

BRBRBR



Core, cache, DRAM interaction

Computer Architecture 6

Back-end
data

❸

❷

❹

…
L1-I

C
o
re

Front-end
(code)

❶

L2/LLC

L1-D

Unified



Core, cache, DRAM interaction

Computer Architecture 7

C
o
re

$
LOAD X



Core, cache, DRAM interaction

Computer Architecture 8

C
o
re

$
LOAD X

Hit

Data

Few cycles



On a miss: Critical Word first

Computer Architecture 9

C
o
re

$
LOAD X

Data

On a miss, respond with the word/byte requested to the core so 
that core can continue while fetching the rest of the block

Miss



On a miss: Early Restart

Computer Architecture 10

C
o
re

$
LOAD X

Data

On a miss, fetch the words/bytes in normal order, but as soon as 
the requested word/byte of the block arrives, send it to the core. 

Miss



Core, cache, DRAM interaction

Computer Architecture 11

C
o
re

$
LOAD X

Miss

Data

100s of cycles

I am an out-of-order core
One cache miss and can’t 
handle anymore misses



MSHRS (Miss-status holding registers)

Computer Architecture 12

C
o
re

$
LOAD X

Miss

Data

X

Non-blocking cache



MSHRS (Miss-status holding registers)

Computer Architecture 13

C
o
re

$
LOAD Y

Miss

Data

X Y



MSHRS (Miss-status holding registers)

Computer Architecture 14

C
o
re

$
LOAD Z

Miss

Data

X Y Z

K-entry MSHR allows K outstanding misses: provides memory-
level parallelism 



MSHRS (Miss-status holding registers)

Computer Architecture 15

C
o
re

$
LOAD Z

Miss

Data

X Y Z

DRAM response time is not constant: can take from 60 cycles to 
1000s of cycles (on a multi-core system). 



MSHRS (Miss-status holding registers)

Computer Architecture 16

C
o
re

$
LOAD Z

Miss

Data

X Y Z

DRAM response time is not constant: can take from 60 cycles to 
1000s of cycles (on a multi-core system). 



MSHRS (Miss-status holding registers)

Computer Architecture 17

C
o
re

$
LOAD Z

Miss

Data

X Z

DRAM response time is not constant: can take from 60 cycles to 
1000s of cycles (on a multi-core system). 



What about writes (stores)

Computer Architecture 18

On a hit: Update the cache block. We need an additional bit in 
tag-store, named dirty bit along with the valid bit and 
replacement priority bits. 

Write-through cache: On a hit, write into a cache block and also 
into the next-level in the memory hierarchy 

Write-back cache: On a hit, write into a cache block only, and 
during replacement update the next-level



What about writes: Writeback cache

Computer Architecture 19

C
o
re

$
STORE Z data Z



What about writes: On replacement

Computer Architecture 20

C
o
re

$
STORE Z

data
Write-back Buffer



Write-back cache 

Computer Architecture 21

C
o
re

$
STORE Z

data

Write-back Buffer

Write-back cache In general, STOREs are not critical for 
performance. But why?



What about a write miss?

Computer Architecture 22

C
o
re

$
STORE Z

Miss
Z

LOAD Z

STORE gets converted to a LOAD, 
and data is allocated into the 
cache (write-allocate policy). 

Usually write-allocate is used 
with the write-back caches. 



Write Merging

Computer Architecture 23

STORE to address Z, Z+1, Z+16, Z+63 merged as all 
belong to one cache line of 64 bytes. 



The Bigger Picture

CPU time = CPU execution cycles + Memory-stall cycles

Clock cycle time may be different 

Memory-stall cycles = Read-stalls + Write-stalls 

Read/Write stalls = 

#Reads/writes X Read/Write miss-rate X Read/write miss-penalty

Computer Architecture 24



Met Dank

Computer Architecture 25


