



# CS305: Computer Architecture DRAM Timing Constraints

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/

#### **Row Access**

A "DRAM row" is also called a "DRAM page" "Sense amplifiers" also called "row buffer"

#### Each address is a <row,column> pair Access to a "closed row"

- Activate command opens row (placed into row buffer)
- Read/write command reads/writes column in the row buffer
- Precharge command closes the row and prepares the bank for next access

#### Access to an "open row"

No need for activate command

# Row Buffer hit/miss/conflict



### **DRAM Timing Constraints**

tRAS: Row address strobe latency

tRP: Precharge latency

tCAS: Column address strobe latency

tRC: Row cycle time: tRAS+tRP

**Computer Architecture** 

4

# Row (Page) Policies

- Open Page (do not get confused with an OS page)
- After an access: Keep the page in the row-buffer
- Consecutive accesses to the same page : Row-buffer Hit
- On an access to different page: Close the row and open the new one Closed page:
- After an access: Close the page if there are no accesses to the same row in the request queue.
- Consecutive accesses to different page : Low latency
- On an access to different page: No need to close the row

10K view on the latency

Page Empty: ACT + CAS

Page Hit: CAS

Page Miss: PRE+ACT+CAS



DRAM cells lose contents after a while, Refresh command refreshes all rows at different granularity

How to implement a refresh? What is the latency? How frequent?

DRAM cells are refreshed every 64 ms at normal temperature (< 85°C). Computer Architecture



## Reads and Writes(Writebacks)

Reads are critical to performance

Write Queue stores writes and the writes are serviced after # writes reach a threshold



The direction of the data bus changes from reads to writes. So ??

DRAM controller creates DRAM commands from based on the requests at read Q and write Q

# DRAM Scheduling

Based on Row-buffer locality, Source of the request, Loads/Stores Load criticality

Satisfy all the timing constraints. Around 60

**FR-FCFS** 

Prefers requests with Row hits (column-first) FR: First Ready

#### DRAM Bandwidth

| Names                    | Memory<br>clock | I/O bus clock | Transfer rate | Theoretical bandwidth |
|--------------------------|-----------------|---------------|---------------|-----------------------|
| DDR-200, PC-1600         | 100 MHz         | 100 MHz       | 200 MT/s      | 1.6 GB/s              |
| DDR-400, PC-3200         | 200 MHz         | 200 MHz       | 400 MT/s      | 3.2 GB/s              |
| DDR2-800, PC2-<br>6400   | 200 MHz         | 400 MHz       | 800 MT/s      | 6.4 GB/s              |
| DDR3-1600, PC3-<br>12800 | 200 MHz         | 800 MHz       | 1600 MT/s     | 12.8 GB/s             |
| DDR4-2400, PC4-<br>19200 | 300 MHz         | 1200 MHz      | 2400 MT/s     | 19.2 GB/s             |
| DDR4-3200, PC4-<br>25600 | 400 MHz         | 1600 MHz      | 3200 MT/s     | 25.6 GB/s             |
| DDR5-4800, PC5-<br>38400 | 300 MHz         | 2400 MHz      | 4800 MT/s     | 38.4 GB/s             |
| DDR5-6400, PC5-<br>51200 | 400 MHz         | 3200 MHz      | 6400 MT/s     | 51.2 GB/s             |

# Metrics of Interest: Multicore system with shared resources

Application *i* running on an N-core system

Throughput =  $\sum$  IPC (i), does not consider fairness

Individual Slowdown (i) = CPI-together (i) / CPI-alone (i)

Weighted Speedup =  $\sum$  (IPC-together(i) / IPC-alone (i))

#### Hvala