

CS305: Computer Architecture

Speculative Execution

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/

Tomasulo, O3 completion, we need inorder complete (commit) ③

- Instructions fetched and decoded into instruction reorder buffer in-order
- Execution is out-of-order (\Rightarrow out-of-order completion)
- Commit (write-back to architectural state, i.e., regfile & memory) is in-order

Temporary storage needed to hold results before commit (shadow registers and store buffers)

Dynamic scheduling with speculative execution

Need as many ports on ROB as register file

Speculative O3 with Tomasulo and ROB

1. **Issue**—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send operands & reorder buffer no. for destination (this stage sometimes called "dispatch")

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result; when both in reservation station, execute; checks RAW (sometimes called "issue")

3. Write result—finish execution (WB) Write on Common Data Bus to all awaiting FUs

& reorder buffer; mark reservation station available.

4. Commit—*When instruction reaches head of the ROB,* update register with reorder result When instr. at head of reorder buffer & result present, update register with result (or store to memory) and remove instr from reorder buffer. Mispredicted branch flushes reorder buffer (sometimes called "graduation")

Computer Architecture

4

Memory Disambiguation

- Question: Given a load that follows a store in program order, are the two related?
 - (Alternatively: is there a RAW hazard between the store and the load)?
 - Eg: st 0(R2),R5 ld R6,0(R3)
- Can we go ahead and start the load early?
 - Answer is that we are not allowed to start load until we know that address $O(R2) \neq O(R3)$

A Complex world

If we start fetching multiple instructions in one go; multiple issue;

All the structures should be updated concurrently for multiple instructions 🛞

Modern processors use pipelined structures. Updates at the rising/falling edges.

Is this out-dated stuff

Intel Core Microarchitecture

Some more

Some from IBM

AMD

For Example,

https://en.wikichip.org/wiki/intel

https://ark.intel.com/content/www/us/en/ark.html#@ Processors

Doh Jeh