

CS305: Computer Architecture Spectre and Meltdown

https://www.cse.iitb.ac.in/~biswa/courses/CS305/main.html

https://www.cse.iitb.ac.in/~biswa/

Microarchitecture

Microarchitecture

Security: A bit Subtle

You do not **see (READ)** what you are not supposed to see

You do not **change (WRITE)** what you are not supposed to see

You do not affect (DELAY) others (un)intentionally

Attacks Inside

In News

New SWAPGS Side-Channel Attack Bypasses Spectre and Meltdown Defenses

'RAMBleed' Rowhammer attack can now steal data, not just alter it

 \square

Timing Channel

Toy Example of side-channel attacks

Attacks at the LLC exploit timing channels: *LLC miss > LLC hit*

Threat

Knowing the victim *has accessed a cache set (line)* can be considered as a *successful* attack

Spectre and Meltdown

Spectre in Action


```
int CS305Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS305Array))
      y = MyArray[CS305Array[attacker]*512]
```


Branch predictor returns TRUE 🟵

```
int CS305Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS305Array))
        y = MyArray[CS305Array[attacker]*512]
```


Branch predictor returns TRUE 😕

ТТ	Т	Т	Т	Т	Т	Т	Т	Т

Attacker has mis-trained it oxtimes oxtimes

How? By using values less than 3 always 🛞 🛞 Computer Architecture

```
int CS305Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS305Array))
        y = MyArray[CS305Array[attacker]*512]
```


Branch predictor returns TRUE 🟵

Attacker has mis-trained it $\ensuremath{\mathfrak{S}}\xspace$

Processor is on the wrong-path $\mathfrak{S} \mathfrak{S}$

```
int CS305Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS305Array))
        y = MyArray[CS305Array[attacker]*512]
```


Branch predictor returns TRUE 🟵

Attacker has mis-trained it $\boldsymbol{\boldsymbol{\Im}}\boldsymbol{\boldsymbol{\Im}}$

Processor is on the wrong-path $\mathfrak{S} \mathfrak{S}$

Branch resolution latency 200 cycles $\mathfrak{S} \mathfrak{S} \mathfrak{S}$

```
int CS305Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS305Array))
        y = MyArray[CS305Array[attacker]*512]
```


Branch predictor returns TRUE 🟵

Attacker has mis-trained it $\boldsymbol{\boldsymbol{\otimes}}$ $\boldsymbol{\boldsymbol{\otimes}}$

Processor is on the wrong-path $\mathfrak{S} \mathfrak{S}$

Yes, you guessed it right: cache attacks oxtimes oxtimes oxtimes oxtimes

Next

Processor realized it was a mistake and *flushed* all wrong path instructions

But cache has the data oxtimes

y = MyArray[CS305Array[attacker]*512]

LOAD MyArray[0] 60 ns LOAD MyArray[512] 60 ns LOAD MyArray[1024] 5 ns Bingo !! <u>CS305Array[attacker] = 2</u>

Meltdown: The O3 curse!

CS773: Computer Architecture for Performance and Security

January 2022

Go raibh maith agat