
https://www.cse.iitb.ac.in/~biswa/

CS683: Advanced Computer
Architecture

Lecture-2: Cache-friendly code
https://www.cse.iitb.ac.in/~biswa/courses/CS683/main.html

https://www.cse.iitb.ac.in/~biswa/

Recap of last lecture

•Why, what , and how of Computer Architecture

•Performance: What is it?

• The impact of optimizations and why we all should
care?

Advanced Computer Architecture 2

Phones (smart/non-smart) on silence
plz, Thanks

Advanced Computer Architecture 3

From where does these zeros come from?

4

L3

L1 L2

2 Cycles
12 Cycles

30 Cycles
200
Cycles

D
R

A
M

 C
o

n
tr

.

C
o

re

CPU

Memory stores CODE and DATA
Processor accesses through LOADs (reads) and STOREs(writes)
Memory Wall Advanced Computer Architecture

Hang on!! I got the Mantra!!

5

Reduction in DRAM accesses ~
Reduction in CPI (cycles per instruction)

WRONG!
▪ First Law of Performance:

Make the common case fast
▪ Second Law of Performance:

Make the fast case common
Amdahl’s law

What if your program is not memory intensive
Advanced Computer Architecture

Do not ignore the
uncommon too

• Give me an example,
coffee/chai point +1

Advanced Computer Architecture 6

Let’s Pause and understand:

The game of “common” and “uncommon”

Advanced Computer Architecture 7

Do not A
d

van
ced

 C
o

m
p

u
ter A

rch
itectu

re

8

Over-engineer

Over-think

Over …………………..

10,000 Feet View on Caches

9

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

1,00,000.0

10,00,000.0

1,00,00,000.0

10,00,00,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

$$: Cache
Speculation technique

Speculation works
because of locality

Advanced Computer Architecture

Caches
Hardware hash tables ☺

Advanced Computer Architecture 10

Locality (why does it exist?)

11

• Temporal locality:
• Recently referenced items are likely

to be referenced again

• Spatial locality:
• Items with nearby addresses tend

to be referenced again

Advanced Computer Architecture

Locality: Example

12

• Data references
• Reference array elements in succession

(stride-1 reference pattern).
• Reference variable sum each iteration.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial/Temporal
Locality?

temporal

spatial

Advanced Computer Architecture

Wake-up Test: Improve Spatial Locality

13

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}
Advanced Computer Architecture

Cache and DRAM

14

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

8 9 14 3

Cache

DRAM

4

4

4

10

10

10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request: 14

14

Block b is in
cache: Hit!

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request: 12Block b is not
in cache:Miss!

Block b is fetched from
Memory (replacement)

Request: 12

12

12

12

Advanced Computer Architecture

Cache Mapping

15

OFFSETSET INDEXTAG

6 0

SET 0

SET 1

SET 2

SET 3

B0

B1

B2

B3

Advanced Computer Architecture

Direct Mapped: One block=One set

16

S = 2s sets

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Advanced Computer Architecture

Set Associative

17

W = 2w blocks per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
= S x W x B data bytes

valid bit Advanced Computer Architecture

Set Associative in Action:

18

Way = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag

Advanced Computer Architecture

Wake-up test again: #ints inside a block?

19

18 bits 10 bits 4 bits

031

Tag Set index Block offset

Address:

of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We
need more infoAdvanced Computer Architecture

Wake-up test again:

20

int CS683(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Accessed

Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?

Advanced Computer Architecture

The 3Cs

21

• Cold (compulsory) miss
• Cold misses occur because the cache starts empty and this is

the first reference

• Capacity miss
• Occurs when the set of active cache blocks (working set) is

larger than the cache.

• Conflict miss ☺ conflicting addresses into one set

Advanced Computer Architecture

Looks Like This

22

Intel Sandy Bridge Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3–20MB

Advanced Computer Architecture

Matrix Multiplication

23

• Description:
• Multiply N x N matrices

• Matrix elements are doubles (8 bytes)

• O(N3) total operations

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Advanced Computer Architecture

Why Matrix
Multiplication?

• AI/ML

• Image Processing

• Scientific Computing

• Graph traversals

• Many more …

Advanced Computer Architecture 24

Miss Rate Analysis

25

• Assume:
• Block size = 32B (big enough for four doubles)

• Matrix dimension (N) is very large
• Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Advanced Computer Architecture

Cache Layout

26

• C arrays allocated in row-major order
• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements
• if block size (B) > sizeof(aij) bytes, exploit spatial locality

• miss rate = sizeof(aij) / B
• Stepping through rows in one column:

• for (i = 0; i < N; i++)
sum += a[i][0];

• accesses distant elements
• no spatial locality!

• miss rate = 1 (i.e. 100%)
Advanced Computer Architecture

Effect of loops (ijk)

27

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] *
b[k][j];

c[i][j] = sum;

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles),
your laptop will have 64B blocks

Advanced Computer Architecture

Effect of loops (kij)

28

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Advanced Computer Architecture

Effect of loops (jki)

29

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Advanced Computer Architecture

Let’s Dig Deep: Where are the Cache misses?
Cache grind

30Advanced Computer Architecture

Matrix Multiplication with Tiling/Blocking: 101 ☺

31Advanced Computer Architecture

32

Some More Visibility

Advanced Computer Architecture

https://users.ics.aalto.fi/suomela/cache-blocking-demo/

Naïve MM

33

{implements C = C + A*B}
for i = 1 to n

{read row i of A into fast memory}

for j = 1 to n

{read C(i,j) into fast memory}

{read column j of B into fast memory}

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

{write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Advanced Computer Architecture

A bit of analysis

• Number of slow memory
references on unblocked
matrix multiply

• Say a block size is 64 bytes
and array elements are of 8
bytes

Advanced Computer Architecture 34

Here it is

Advanced Computer Architecture

35

9/8 (n3) memory accesses

How: One miss in eight accesses
(64B cache block) for the first array
(1/8)

Second array: 8/8 misses, total: 9/8
mises per iteration Total number
of iterations = you know it ☺

Tiled/Blocked

Advanced Computer Architecture 36

The Code

Advanced Computer Architecture 37

Blocked
or Tiled
MM

Advanced Computer Architecture

38

Number of blocks per row or per column= n/B,
For two arrays = 2n/B

Block size = B X B

Three blocks are in the C, 3B2 are in the cache

For each block: B2/8 misses,

Two arrays = 2n/B X B2/8

Total number of misses = n3/4B

Another
way

Advanced Computer Architecture

39

For each block: : B2/8 misses

Two blocks (two arrays) = : B2/4 misses

Total n3/B3 iterations

Total number of misses = n3/4B

Speedup

A: Non-tiled: 9/8 (n3)

B: Tiled: n3/4B

Speedup =

Advanced Computer Architecture 40

Speedup

If B = 16, 72X speedup ☺☺

Why 16?

Advanced Computer Architecture 41

Software (compiler/programmer)
Prefetching

for(i=0; i< 3; i++)

for (j=0;j<100;j++)

a[i][j] = b[j][0] * b[j+1][0]

Where to add prefetch instructions?

Advanced Computer Architecture 42

Coffee Credits

Hrishikesh: +1

Advanced Computer Architecture 43

	Slide 1: CS683: Advanced Computer Architecture
	Slide 2: Recap of last lecture
	Slide 3: Phones (smart/non-smart) on silence plz, Thanks
	Slide 4: From where does these zeros come from?
	Slide 5: Hang on!! I got the Mantra!!
	Slide 6: Do not ignore the uncommon too
	Slide 7: Let’s Pause and understand: The game of “common” and “uncommon”
	Slide 8: Do not
	Slide 9: 10,000 Feet View on Caches
	Slide 10: Caches
	Slide 11: Locality (why does it exist?)
	Slide 12: Locality: Example
	Slide 13: Wake-up Test: Improve Spatial Locality
	Slide 14: Cache and DRAM
	Slide 15: Cache Mapping
	Slide 16: Direct Mapped: One block=One set
	Slide 17: Set Associative
	Slide 18: Set Associative in Action:
	Slide 19: Wake-up test again: #ints inside a block?
	Slide 20: Wake-up test again:
	Slide 21: The 3Cs
	Slide 22: Looks Like This
	Slide 23: Matrix Multiplication
	Slide 24: Why Matrix Multiplication?
	Slide 25: Miss Rate Analysis
	Slide 26: Cache Layout
	Slide 27: Effect of loops (ijk)
	Slide 28: Effect of loops (kij)
	Slide 29: Effect of loops (jki)
	Slide 30: Let’s Dig Deep: Where are the Cache misses? Cache grind
	Slide 31: Matrix Multiplication with Tiling/Blocking: 101
	Slide 32
	Slide 33: Naïve MM
	Slide 34: A bit of analysis
	Slide 35: Here it is
	Slide 36: Tiled/Blocked
	Slide 37: The Code
	Slide 38: Blocked or Tiled MM
	Slide 39: Another way
	Slide 40: Speedup
	Slide 41: Speedup
	Slide 42: Software (compiler/programmer) Prefetching
	Slide 43: Coffee Credits

