) cAsPER

CS683: Advanced Computer
Architecture

Lecture-2: Cache-friendly code
https://www.cse.iitb.ac.in/~biswa/courses/CS683/main.html

https://www.cse.iitb.ac.in/~biswa/

https://www.cse.iitb.ac.in/~biswa/

Recap of last lecture

* Why, what , and how of Computer Architecture

e Performance: What is it?

* The impact of optimizations and why we all should
care?

Advanced Computer Architecture

94008 ¢
2006000 o0
*R60000000
G%QQ.GQQGOQ%!QC
00‘.!%&!20!@0“‘0
QIQBElQ'QD.il
0000000000
s0000000
&

From where does these zeros come from?

4 B

a 2 Cycles E

12 Cycles

K 30 Cycles

DRAM Contr.

%

Cycles

/Memory stores CODE and DATA
Processor accesses through LOADs (reads) and STOREs(writes)
kI\/Iemory Wall

Advanced Computer Architecture

Hang on!! | got the Mantra!!

LReduction in DRAM accesses ™ J
Reduction in CPI (cycles per instruction)

WRONG!

» First Law of Performance:

Make the common case fast

= Second Law of Performance:

Make the fast case common
Amdahl’s law

{What if your program is not memory intensive
Advanced Computer Architecture o

DO not ignore the
uncommon too

* Give me an example,
coffee/chai point +1

Let’s Pause and understand:

Advanced Computer Architecture 7

o0
.........

Over-engineer

Time (ns)

10,000 Feet View on Caches

10,00,00,000.0
1,00,00,000.0
10,00,000.0
1,00,000.0
10,000.0
1,000.0

100.0

10.0

1.0

0.1

0.0

\%

B S

s e S

\c<%‘(i;g

4 N
SS: Cache
Speculation technique
_ J/
2
/7

—e—Disk seek time (/ @6\

——SSD access time
—&-DRAM access time
—o—SRAM access time '~'\\‘/,,//
-+ CPU cycle time
—O—Effective CPU cycle time

1985 1990 1995 2000 2003 2005 2010 2015

Year

P
Speculation works

because of locality
o

Advanced Computer Architecture 9

-
|)

Locality (why does it exist?)

* Temporal locality:

* Recently referenced items are likely
to be referenced again

N/
I
. . S
* Spatial locality: H B

* |tems with nearby addresses tend
to be referenced again

Advanced Computer Architecture 11

Locality: Example

sum = 0;
for (1 = 0; 1 < n; 1++) Spatial/Temporal
sum += al[1]; Locality?
return sum;,
* Data references
* Reference array elements in succession spatial
(stride-1 reference pattern).
* Reference variable sum each iteration. temporal

Advanced Computer Architecture 12

Wake-up Test: Improve Spatial Locality

1nt sum array 3d(int a[M][N][N])
{

int 1, 3, k, sum = 0;

for (i = 0; 1 < N; 1i++)
for (j = 0; 7 < N; J++)
for (k = 0; k < M; k++)
sum += alk][1][J];
return sum;

Advanced Computer Architecture

13

Cache and DRAM

Block b is not

Block b is in Request: 14 Request: 12
Cache cache: Hit! in cache:Miss!
4 o) 10 3 8 9 14 3 8 12 14 3
10 12 Request: 12
Block b is fetched from
DRAM Memory (replacement)
0 1 2 3 0 1 2 3 0 1 2 3
4 5 6 7 4 5 6 7 4 5 6 7
8 o) 10 11 8 9 10 11 8 9 10 11
12 13 14 15 12 13 14 15 12 13 14 15
O 0000000000000 OC®OOOS O 0000000000 0O0COCOG®OOO O 0000000000000 OC®OGOO

Advanced Computer Architecture

14

Cache Mapping

SETO

TAG

SET INDEX

OFFSET

SET 1

Bl

B1 |

SET 2

SET 3

B2

B3

Advanced Computer Architecture

6

0

15

Direct Mapped: One block=0One set

4 : T LT Address of int:
v 38 tbits | 0..01 | 100

Vv tag 0111231451617

find set
S=255ets<
\Y tag 0111213141516 7
00000000 00O0COCOGEOEOGOOG®EO®OOO
\Y; tag Ol1121314)15]|61]7
\.

Advanced Computer Architecture

Set Assoclative

W = 2% blocks per set
A

S =2%sets <

o000
Cache size:
=S x W x B data bytes
v tag OJ21]2] =e°-" B-1
— 9b
T — ~— — B =2 bytes per cache block (the data)
valid bit

Advanced Computer Architecture

17

Set Associative In Action:

Way = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

vl | tag | [o]z1]2]3]24]5]6]7 vl | tag | [o]|1]2]3]4]5]6]7

block offset

Advanced Computer Architecture

Wake-up test again: #ints inside a block?
18 bits 10 bits 4 DIts
Address:
31 0
N J \) \)
Y Y Y
Tag Set index Block offset
of int in block
A.|O
B. |1
C.|2
D)4
E. |Unknown: We
Advanced Computer Architecturgneed more info 19

Wake-up test again:

If N = 16, how many bytes does the loop access of a?

int CS683(1nt* a, int N)
{
int 1;
int sum =
for(1 = 0;

{

0;
1 < N; 1++)

sum += al[i];
}
return sum;
} Advanced Computer Architecture

Accessed
Bytes

4

16

64

O|0)m| >

256

20

The 3Cs

* Cold (compulsory) miss

* Cold misses occur because the cache starts empty and this is
the first reference

* Capacity miss
* Occurs when the set of active cache blocks (working set) is
larger than the cache.

* Conflict miss © conflicting addresses into one set

Advanced Computer Architecture 21

Looks Like This

e

ontroller

Intel Sandy Bridge Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3—-20MB

22

Matrix Multiplication

* Description:

/* ijk */
* Multiply N x N matrices for (i=0; i<n; i++) {
* Matrix elements are doubles (8 bytes) for (3=0; j<n; j++) {
sum = 0.0;

* O(N3) total operations

for (k=0; k<n; k++)
sum += al[i] [k] * bl[k][F];

c[1][J] = sum;

Advanced Computer Architecture 23

Why Matrix
Multiplication?

* Al/ML

* Image Processing

* Scientific Computing
* Graph traversals

* Many more ...

ApuUterArchitecture—

Miss Rate Analysis

* Assume:
* Block size = 32B (big enough for four doubles)

e Matrix dimension (N) is very large
* Approximate 1/N as 0.0

* Cache is not even big enough to hold multiple rows

* Analysis Method:
* Look at access pattern of inner loop

— — —

] k J

i — i X k

C A B
Advanced Computer Architecture

25

Cache Layout

e C arrays allocated in row-major order
* each row in contiguous memory locations

 Stepping through columns in one row:
e« for (i = 0; i < N; i++)
sum += a[0] [i];
* accesses successive elements
* if block size (B) > sizeof(a;) bytes, exploit spatial locality
* miss rate = sizeof(a;) / B
 Stepping through rows in one column:
e for (1 = 0; i < N; i++)
sum += a[i][0];
* accesses distant elements
* no spatial locality!

* miss rate = 1 (i.e. 100%)
Advanced Computer Architecture

26

Effect of loops (ijk)

Inner loop:
/* 13k */ =
for (1i=0; i<n; i++) { :::Uﬁ)ﬁfi v
for (3=0; j<n; j++) | A X)
sum = 0.0; ‘ ‘ ‘
for (k=0,; k<n; k++) Row-wise Column- Fixed
cum [l] k] wise
blk][J1; Block size = 32B (four doubles),
cli][3] = sum; your laptop will have 64B blocks

Miss rate for inner loop iterations.
A B C

Advanced Computer Architectif? 1.0 00 27

Effect of loops (kij)

/* kij */ Inner loop:
=U, <n; ++ _
for (k=0; k<n; k++) { T E(k'*)g)
for (1=0; 1<n; 1++) { i (i,*)
r = alil [k]; A : :
f 1=0,; 1<n; J++ | |
ot (j | JoH :) Fixed Row-wise Row-wise

cli][3] +=x * blk][J];

Advanced Computer Architecture 28

Effect of loops (jki)

/* Jki */
for (3=0; j<n; Jj++) {
for (k=0; k<n; k++) {
r = blk][3]7
for (1i=0; 1<n; 1i++)
cl[1] (3] += alz1]l[k] * r;

Advanced Computer Architecture

Inner loop:

(*,k)

a

A

|

Column-
wise

(k,j)
[

B

|

Fixed

(*,j)

Column-
wise

29

Let’s Dig Deep: Where are the Cache misses?
Cache grind

Ir I1mr ILmr

#include "matrix.h"
#define min(a,b) ((a)<(b)?(a):(b)) //Macro to return small value from a and b.

[*function to perform matric multiplication.*/
void mat_multiply(void *mat_a, void *mat_b, void *mat_c, int size)

{

/[Type conversion generic type to requred data type
double *a = (double *) mat_a;

double *b = (double *) mat_b;

double *c = (double *) mat_c;

int i,j,k;

" " : : . /* Matrix multiplication starts */
4,101 3,074 | 0 0 for(i=0;i<size;i++)
4,199,424 3,147,776 1,024 0 0 for(j=0;j<size;j++)

11,534,336 4,194,304 1,048,576 131,672 131,072 c[i*size + j]=0;
4,300,210,176 3,223,322,624 1,048,576 0 0 for(k=0;k<size;k++)

. & : ‘ : . . . {
15,097,156,608 20,401,094,656 1,076,239,357 1,074,935,805 1,073,741,824 0 0 c[i*size + j] = c[i*size + jl+a[i*size + k]*b[k*size + j];

}
}
}

. [* Matrix multiplication Completed. */
0 }

Advanced Computer Architecture

Matrix Multiplication with Tiling/Blocking: 101 ©

X = X
X = X
X = X

Advanced Computer Architecture

31

Some More Visibility

Advanced Computer Architecture

32

https://users.ics.aalto.fi/suomela/cache-blocking-demo/

Nalve MM

{implements C=C+ A*B}

fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,j) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(i,j) = C(i,j) + Ali,k) * B(k,j)
{write C(i,j) back to slow memory}

C(i.)) C(i.))

+

AG,:)
e

Advanced Computer Architecture

B(.)

33

A bit of analysis

* Number of slow memory
references on unblocked
matrix multiply

e Say a block size is 64 bytes
and array elements are of 8
bytes

Advanced Computer Architecture

Here It IS

35

Tiled/Blocked

/all ai2 | ai3 aln\

ailr a2 a3 a4

Al = ,A12 =
a1 a99 a3 a4
azy as2 az3 a34

A9 = , Agg =

aq) Q42 143 Q44

/* Multiply n x n matrices a and b */
void mmm (int n, double a[n][n], double b[n][n], double c[n] [n]) {
int i, j, k;
for (1 = 0; 1 < n; i+=B)
for (7 = 0; 7 < n; J+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; 11 < i+B; il++)
for (j1 = j; jl < Jj+B; jl++)
for (kl = k; k1l < k+B; kl++)
c[il]1[j1] += a[il] [k1]*b[k1][F1];

Advanced Computer Architecture

Blocked
or Tiled
\Wil\Y/

38

Number of blocks per row or per column= n/B,
For two arrays = 2n/B

Block size=B XB

Three blocks are in the C, 3B2 are in the cache

For each block: B2/8 misses,
Two arrays = 2n/B X B?/8

Total number of misses = n3/4B

Advanced Computer Architecture

Another
WEL,

39

For each block: : B2/8 misses

Two blocks (two arrays) = : B2/4 misses

Total n3/B3iterations

Total number of misses = n3/4B

Speedup

A: Non-tiled: 9/8 (n3)

B: Tiled: n3/4B
Speedup =

Advanced Computer Architecture

40

Speedup

If B=16, 72X speedup © ©

Why 167

Advanced Computer Architecture

Software (compiler/programmer)
Prefetching

¥ _Operation ar

T_mod.use x =

"ir T = False
Tor_mod.use_y False
Tor_mod.use_z = Trye

"selection at the end -add f -_
 _Ob.select= 1 ¢ Or I_O, |< 3, |++
fer_ob.select=1
Mntext.scene.objects.activg . . .
Ml "Selected™ + str(modifier for (J=O oJ< 100 .J++)
#eirror _ob.select = 0))
bpy . context. selected_obM

pons oeces[one name]-sel alil[j] = b[j1[0] * b[j+1][O]

rint(“please select exactiy '™

RROR 7,

_ OPERATOR CLASSES -~

Where to add prefetch instructions?

Advanced Computer Architecture 42

Coffee Credits

Hrishikesh: +1

	Slide 1: CS683: Advanced Computer Architecture
	Slide 2: Recap of last lecture
	Slide 3: Phones (smart/non-smart) on silence plz, Thanks
	Slide 4: From where does these zeros come from?
	Slide 5: Hang on!! I got the Mantra!!
	Slide 6: Do not ignore the uncommon too
	Slide 7: Let’s Pause and understand: The game of “common” and “uncommon”
	Slide 8: Do not
	Slide 9: 10,000 Feet View on Caches
	Slide 10: Caches
	Slide 11: Locality (why does it exist?)
	Slide 12: Locality: Example
	Slide 13: Wake-up Test: Improve Spatial Locality
	Slide 14: Cache and DRAM
	Slide 15: Cache Mapping
	Slide 16: Direct Mapped: One block=One set
	Slide 17: Set Associative
	Slide 18: Set Associative in Action:
	Slide 19: Wake-up test again: #ints inside a block?
	Slide 20: Wake-up test again:
	Slide 21: The 3Cs
	Slide 22: Looks Like This
	Slide 23: Matrix Multiplication
	Slide 24: Why Matrix Multiplication?
	Slide 25: Miss Rate Analysis
	Slide 26: Cache Layout
	Slide 27: Effect of loops (ijk)
	Slide 28: Effect of loops (kij)
	Slide 29: Effect of loops (jki)
	Slide 30: Let’s Dig Deep: Where are the Cache misses? Cache grind
	Slide 31: Matrix Multiplication with Tiling/Blocking: 101 
	Slide 32
	Slide 33: Naïve MM
	Slide 34: A bit of analysis
	Slide 35: Here it is
	Slide 36: Tiled/Blocked
	Slide 37: The Code
	Slide 38: Blocked or Tiled MM
	Slide 39: Another way
	Slide 40: Speedup
	Slide 41: Speedup
	Slide 42: Software (compiler/programmer) Prefetching
	Slide 43: Coffee Credits

