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Recap of last lecture

•Why, what , and how of Computer Architecture 

•Performance: What is it? 

• The impact of optimizations and why we all should 
care? 
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Phones (smart/non-smart) on silence 
plz, Thanks 
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From where does these zeros come from?
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Memory stores CODE and DATA
Processor accesses through LOADs (reads) and STOREs(writes)
Memory Wall Advanced Computer Architecture



Hang on!! I got the Mantra!! 
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Reduction in DRAM accesses ~ 
Reduction in CPI (cycles per instruction) 

WRONG!
▪ First Law of Performance:

Make the common case fast
▪ Second Law of Performance:

Make the fast case common
Amdahl’s law

What if your program is not memory intensive 
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Do not ignore the 
uncommon too 

• Give me an example, 
coffee/chai point +1
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Let’s Pause and understand: 

The game of “common” and “uncommon”
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Over-engineer 

Over-think

Over …………………..



10,000 Feet View on Caches
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Speculation technique

Speculation works 
because of locality
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Caches
Hardware hash tables ☺
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Locality (why does it exist?)
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• Temporal locality:  
• Recently referenced items are likely 

to be referenced again

• Spatial locality:  
• Items with nearby addresses tend 

to be referenced again
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Locality: Example
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• Data references
• Reference array elements in succession 

(stride-1 reference pattern).
• Reference variable sum each iteration.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial/Temporal
Locality?

temporal

spatial

Advanced Computer Architecture



Wake-up Test: Improve Spatial Locality
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int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}
Advanced Computer Architecture



Cache and DRAM
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Cache Mapping
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Direct Mapped: One block=One set
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S = 2s sets

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Set Associative
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W = 2w blocks per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
= S x W x B data bytes

valid bit Advanced Computer Architecture



Set Associative in Action:
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Way = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes (= hit)

block offset

tag
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Wake-up test again: #ints inside a block?
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18 bits 10 bits 4 bits

031

Tag Set index Block offset

Address:

# of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We 
need more infoAdvanced Computer Architecture



Wake-up test again:
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int CS683(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Accessed 

Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?
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The 3Cs
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• Cold (compulsory) miss
• Cold misses occur because the cache starts empty and this is 

the first reference

• Capacity miss
• Occurs when the set of active cache blocks (working set) is 

larger than the cache.

• Conflict miss ☺ conflicting addresses into one set
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Looks Like This 
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Intel Sandy Bridge Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3–20MB
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Matrix Multiplication
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• Description:
• Multiply N x N matrices

• Matrix elements are doubles (8 bytes)

• O(N3) total operations

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 
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Why Matrix 
Multiplication?

• AI/ML

• Image Processing

• Scientific Computing

• Graph traversals 

• Many more …
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Miss Rate Analysis
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• Assume:
• Block size = 32B (big enough for four doubles)

• Matrix dimension (N) is very large
• Approximate 1/N as 0.0

• Cache is not even big enough to hold multiple rows

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Cache Layout 
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• C arrays allocated in row-major order
• each row in contiguous memory locations

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements
• if block size (B) > sizeof(aij) bytes, exploit spatial locality

• miss rate = sizeof(aij) / B
• Stepping through rows in one column:

• for (i = 0; i < N; i++)
sum += a[i][0];

• accesses distant elements
• no spatial locality!

• miss rate = 1 (i.e. 100%)
Advanced Computer Architecture



Effect of loops (ijk)
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/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * 
b[k][j];

c[i][j] = sum;

}

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles), 
your laptop will have 64B blocks
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Effect of loops (kij)
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/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed
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Effect of loops (jki)

29

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed
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Let’s Dig Deep: Where are the Cache misses? 
Cache grind 

30Advanced Computer Architecture



Matrix Multiplication with Tiling/Blocking: 101 ☺
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Some More Visibility 

Advanced Computer Architecture
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Naïve MM
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{implements C = C + A*B}
for i = 1 to n

{read row i of A into fast memory}

for j = 1 to n

{read C(i,j) into fast memory}

{read column j of B into fast memory}

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

{write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)
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A bit of analysis

• Number of slow memory 
references on unblocked 
matrix multiply

• Say a block size is 64 bytes 
and array elements are of 8 
bytes

Advanced Computer Architecture 34



Here it is 

Advanced Computer Architecture
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9/8 (n3) memory accesses

How: One miss in eight accesses 
(64B cache block) for the first array 
(1/8)

Second array: 8/8 misses, total: 9/8 
mises per iteration  Total number 
of iterations = you know it ☺



Tiled/Blocked
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The Code
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Blocked 
or Tiled 
MM

Advanced Computer Architecture
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Number of blocks per row or per column= n/B, 
For two arrays = 2n/B 

Block size = B X B 

Three blocks are in the C, 3B2 are in the cache

For each block: B2/8 misses,  

Two arrays = 2n/B X B2/8

Total number of misses  = n3/4B  



Another
way

Advanced Computer Architecture
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For each block: : B2/8 misses  

Two blocks (two arrays) = : B2/4 misses 

Total n3/B3 iterations

Total number of misses  = n3/4B  



Speedup

A: Non-tiled: 9/8 (n3)

B: Tiled: n3/4B 

Speedup =  

Advanced Computer Architecture 40



Speedup

If B = 16, 72X speedup ☺☺

Why 16? 
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Software (compiler/programmer) 
Prefetching 

for( i=0; i< 3; i++)

for (j=0;j<100;j++)

a[i][j] = b[j][0] * b[j+1][0]

Where to add prefetch instructions?
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Coffee Credits

Hrishikesh: +1 

Advanced Computer Architecture 43
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