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Logistics

Paper review/presentation from January 31. 

We will float a link soon. 

We will float papers of interest by the end of this week. 
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Architecture:101 
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Microarchitecture:101
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From Performance to Security: 10K Feet View
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Security: A bit Subtle 
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Confidentiality

Integrity

Availability

You do not see (READ) what you are not supposed 
to see

You do not change (WRITE) what you are not 
supposed to see

You do not affect (DELAY) others (un)intentionally



Brushing-up: Information Leakage
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Modular exponentiation, be mod n

Exponent e is used for 
decryption

Attacker tries to get the e

ei = 0, Square Reduce (SR) 
ei = 1, SRMR 

multiply

square reduce



Timing Channel

8Adpated from flush+reload attack [Usenix Security  ‘14]



Multi-core
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Private vs Shared?
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…

Interconnect

Cache (Private/Shared)

Core 0 Core 1 Core 2 Core 3 Core N-1



Application Behavior
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Interconnect
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Core-Cache Fitting

LLC Fitting/thrashing



Shared Last-level Cache (LLC): Banked or Sliced
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Inclusiveness
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Non-inclusive (Commercial machines)
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Exclusive
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Toy Example: Flush Based Attacks
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If  secret=1  do 
access(&a)

else // secret=0
no-access

Victim

flush(&a)
t1=start_timer

access(&a)
t2=end_timer

Attacker

Fast – 1
Slow – 0 



Side and Covert Channels
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Side-channel attacks

Spy Victim

Covert-channel attacks

Let’s 
play

Oh Yes!! 



Shared LLC Attacks
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Attacks at the LLC exploit timing channels: 
LLC miss > LLC hit 

Flush + Reload Evict + Reload Prime + Probe

clflush Eviction based attacks



Threat Model
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Knowing the victim has accessed a cache set 
(line) can be considered as a successful attack 



Pause
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Flush+Reload Attack (Shared Memory Attack)
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LLC

21

Step 0:Spy maps the shared 
library, shared in the cache

Shared library: Shared 
Address(es) 



Usage of clflush instruction (Flush Cache Line)
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Invalidates from every level of the cache hierarchy in the 

cache coherence domain the cache line that contains the 

linear address specified with the memory operand. If that 

cache line contains modified data at any level of the cache 

hierarchy, that data is written back to memory. The source 

operand is a byte memory location.



Flush+Reload Attack
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Clflush

LLC

23

Step 0:Spy maps the shared 
library, shared in the cache

Step 1:Spy flushes the cache 
block



Flush+Reload Attack
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LLC

24

Step 0:Spy maps the shared 
library, shared in the cache

Step 1:Spy flushes the cache 
block

Step 2: Victim reloads the 
cache block



Flush+Reload Attack
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Step 0:Spy maps the shared 
library, shared in the cache

Step 1:Spy flushes the cache 
block

LLC
Step 2: Victim reloads the 
cache block

Step 3: Spy reloads the cache 
block (hit/miss)

Hit, 
Voila



Hit/Miss; Faster/Slower access

How?

rdtsc instruction : (Read Time-Stamp Counter) instruction is used to 
determine how many CPU ticks took place since the processor was 
reset.
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Out of order processors 
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Out-of-order execution 
(Multiple fetch in one cycle)

1. LOAD

3. clflush
4. rdtsc
5. MUL

2. SUB

DRAM: 300 cycles

300 cycles
1 cycle 

1 cycle 

2 cycles 



Need to enforce Order
fence instructions: lfence, mfence, sfence, cpuid



Flush + Flush
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Voila

LLC

Step 0:Spy maps the shared 
library, shared in the cache

Step 1:Spy flushes the cache 
block



Flush + Flush
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Voila

LLC

Step 0:Spy maps the shared 
library, shared in the cache

Step 1:Spy flushes the cache 
block

Step 2: Victim reloads the 
cache block



Flush + Flush
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Step 0:Spy maps the shared 
library, shared in the cache

Step 1:Spy flushes the cache 
block

Step 2: Victim reloads the 
cache block

Step 3: Spy flushes the cache 
block again

Voila

LLC



No sharing?
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What If I do not share anything with you ??

Do not worry, I have Amazon Prime  

Sorry:  



Prime+Probe
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LLC

33

Step 0:Spy fills the entire 
shared cache



Prime+Probe
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LLC

34

Step 0:Spy fills the entire 
shared cache

Step 1: Victim evicts cache 
blocks while running



Prime+Probe
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Step 0:Spy fills the entire 
shared cache

LLC

Step 1: Victim evicts cache 
blocks while running

Step 2: Spy probes the cache 
set

Voila

If misses then victim 
has accessed the set 



Notion of Time Gap
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WAIT

PRIME

PROBE

VICTIM 
ACCESS

~5K to 10K cycles



Inclusiveness
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L1/L2

LLC

Miss



Inclusiveness
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L1/L2

LLC

Miss
Cross-core back-invalidation



Inclusiveness
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L1/L2

LLC

Miss

Attacker knows whether 
victim has accessed a set or 
not

Miss



Job of an attacker
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CALIBRATION; FOR 
LATENCY THRESHOLD 

FIND OUT ADDRESSES 
OF INTEREST

BITS OF INTEREST



Pause
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Readings

● Flush+Reload: https://www.usenix.org/node/184416.
● Flush+Flush: https://arxiv.org/abs/1511.04594
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https://www.usenix.org/node/184416
https://arxiv.org/abs/1511.04594


Source Code

https://github.com/0xd3ba/Flush-Reload
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https://github.com/0xd3ba/Flush-Reload


Thanks

44


