

CS773:

Computer Architecture for Performance and Security

Lecture 3: Timing Channel Attacks

Logistics

Paper review/presentation from January 31.

We will float a link soon.

We will float papers of interest by the end of this week.

Architecture:101

Microarchitecture:101

From Performance to Security: 10K Feet View

Security: A bit Subtle

Confidentiality

You do not **see (READ)** what you are not supposed to see

Integrity

You do not **change (WRITE)** what you are not supposed to see

Availability

You do not affect (DELAY) others (un)intentionally

Brushing-up: Information Leakage

Modular exponentiation, b^e mod n $x \leftarrow 1$ **for** $i \leftarrow |e|$ -1 **downto** 0 do Exponent *e* is used for $x \leftarrow x^2 \bmod n$ square if $(e_i = 1)$ then $x = xb \mod n$ endif multiply done

return x

decryption

 $e_i = 0$, Square Reduce (SR) e_i = 1, SRMR

Attacker tries to get the e

Timing Channel

Multi-core

Private vs Shared?

Application Behavior

Shared Last-level Cache (LLC): Banked or Sliced

Non-inclusive (Commercial machines)

Exclusive

Toy Example: Flush Based Attacks

If secret=1 do
 access(&a)
else // secret=0
 no-access

Victim

flush(&a) t1=start_timer access(&a) t2=end_timer Attacker

Fast – 1

Slow - 0

Side and Covert Channels

Side-channel attacks

Oh Yes!!

Shared LLC Attacks

Attacks at the LLC exploit timing channels: $LLC\ miss > LLC\ hit$

Flush + Reload

Evict + Reload

Prime + Probe

clflush

Eviction based attacks

Threat Model

Knowing the victim *has accessed a cache set* (*line*) can be considered as a *successful* attack

Flush+Reload Attack (Shared Memory Attack)

Step 0:Spy *maps* the shared library, shared in the cache

Shared library: Shared Address(es)

Usage of clflush instruction (Flush Cache Line)

Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the linear address specified with the memory operand. If that cache line contains modified data at any level of the cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

Flush+Reload Attack

Step 0:Spy *maps* the shared library, shared in the cache

Step 1:Spy *flushes* the cache block

Flush+Reload Attack

Step 0:Spy *maps* the shared library, shared in the cache

Step 1:Spy *flushes* the cache block

Step 2: Victim *reloads* the cache block

Flush+Reload Attack

Step 0:Spy *maps* the shared library, shared in the cache

Step 1:Spy *flushes* the cache block

Step 2: Victim *reloads* the cache block

Step 3: Spy *reloads* the cache block (hit/miss)

Hit/Miss; Faster/Slower access

How?

rdtsc instruction: (Read Time-Stamp Counter) instruction is used to determine how many CPU ticks took place since the processor was reset.

Out of order processors

Out-of-order execution (Multiple fetch in one cycle)

Flush + Flush

Step 0:Spy *maps* the shared library, shared in the cache

Step 1:Spy *flushes* the cache block

Flush + Flush

Step 0:Spy *maps* the shared library, shared in the cache

Step 1:Spy *flushes* the cache block

Step 2: Victim *reloads* the cache block

Flush + Flush

Step 0:Spy *maps* the shared library, shared in the cache

Step 1:Spy *flushes* the cache block

Step 2: Victim *reloads* the cache block

Step 3: Spy *flushes* the cache block again

No sharing?

What If I do not share anything with you??

Do not worry, I have Amazon Prime

Sorry:

Prime+Probe

Step 0:Spy *fills* the entire shared cache

Prime+Probe

Step 0:Spy *fills* the entire shared cache

Step 1: Victim *evicts* cache blocks while running

Prime+Probe

Step 0:Spy *fills* the entire shared cache

Step 1: Victim *evicts* cache blocks while running

Step 2: Spy *probes* the cache set

If misses then victim has accessed the set

Notion of Time Gap

Attacker knows whether victim has accessed a set or not

Job of an attacker

FIND OUT ADDRESSES
OF INTEREST

BITS OF INTEREST

Readings

- Flush+Reload: https://www.usenix.org/node/184416.
- Flush+Flush: https://arxiv.org/abs/1511.04594

Source Code

https://github.com/0xd3ba/Flush-Reload

Thanks

