
https://www.cse.iitb.ac.in/~biswa/

CS773:
Computer Architecture for
Performance and Security

Lecture 3: Timing Channel Attacks

https://www.cse.iitb.ac.in/~biswa/

Logistics

Paper review/presentation from January 31.

We will float a link soon.

We will float papers of interest by the end of this week.

2

Architecture:101

3

Architecture

Memory

ISA

Registers

Programmer

Microarchitecture:101

4

ISA

Registers

Caches, TLBs,

Branch predictors,

Prefetchers, Interconnect,

Out-of-order execution

Memory

ISA

RegistersArchitecture

Programmer

Not exposed to programmer

From Performance to Security: 10K Feet View

55

Software

ISA

Registers

Caches, TLBs,

Branch predictors,

Prefetchers, Interconnect,

Out-of-order execution

ISA

RegistersArchitecture

Security: A bit Subtle

6

Confidentiality

Integrity

Availability

You do not see (READ) what you are not supposed
to see

You do not change (WRITE) what you are not
supposed to see

You do not affect (DELAY) others (un)intentionally

Brushing-up: Information Leakage

7

Modular exponentiation, be mod n

Exponent e is used for
decryption

Attacker tries to get the e

ei = 0, Square Reduce (SR)
ei = 1, SRMR

multiply

square reduce

Timing Channel

8Adpated from flush+reload attack [Usenix Security ‘14]

Multi-core

9

Interconnect

L3

Core 0 Core 1 Core 2 Core 3

L1
L2

L1
L2

L1
L2

L1
L2

Private vs Shared?

10

…

Interconnect

Cache (Private/Shared)

Core 0 Core 1 Core 2 Core 3 Core N-1

Application Behavior

11

Interconnect

Core 0 Core 1

L1/L2 L1/L2

LLC

Core-Cache Fitting

LLC Fitting/thrashing

Shared Last-level Cache (LLC): Banked or Sliced

12

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2

Ring(s)

S0 S1 S2 S3

Inclusiveness

13

B
ack

In
val

L1/L2

LLC

victim

fill

memory

fill

Core request

evict

Non-inclusive (Commercial machines)

14

L1/L2

LLC

fill

fill

Core request

victim

memory

Exclusive

15

L1/L2

LLC

victim

fill

fill

Core request

memory

victim

Toy Example: Flush Based Attacks

16

If secret=1 do
access(&a)

else // secret=0
no-access

Victim

flush(&a)
t1=start_timer

access(&a)
t2=end_timer

Attacker

Fast – 1
Slow – 0

Side and Covert Channels

17

Side-channel attacks

Spy Victim

Covert-channel attacks

Let’s
play

Oh Yes!!

Shared LLC Attacks

18

Attacks at the LLC exploit timing channels:
LLC miss > LLC hit

Flush + Reload Evict + Reload Prime + Probe

clflush Eviction based attacks

Threat Model

19

Knowing the victim has accessed a cache set
(line) can be considered as a successful attack

Pause

20

Flush+Reload Attack (Shared Memory Attack)

21

LLC

21

Step 0:Spy maps the shared
library, shared in the cache

Shared library: Shared
Address(es)

Usage of clflush instruction (Flush Cache Line)

22

Invalidates from every level of the cache hierarchy in the

cache coherence domain the cache line that contains the

linear address specified with the memory operand. If that

cache line contains modified data at any level of the cache

hierarchy, that data is written back to memory. The source

operand is a byte memory location.

Flush+Reload Attack

23

Clflush

LLC

23

Step 0:Spy maps the shared
library, shared in the cache

Step 1:Spy flushes the cache
block

Flush+Reload Attack

24

LLC

24

Step 0:Spy maps the shared
library, shared in the cache

Step 1:Spy flushes the cache
block

Step 2: Victim reloads the
cache block

Flush+Reload Attack

25

Step 0:Spy maps the shared
library, shared in the cache

Step 1:Spy flushes the cache
block

LLC
Step 2: Victim reloads the
cache block

Step 3: Spy reloads the cache
block (hit/miss)

Hit,
Voila

Hit/Miss; Faster/Slower access

How?

rdtsc instruction : (Read Time-Stamp Counter) instruction is used to
determine how many CPU ticks took place since the processor was
reset.

26

Out of order processors

27

Out-of-order execution
(Multiple fetch in one cycle)

1. LOAD

3. clflush
4. rdtsc
5. MUL

2. SUB

DRAM: 300 cycles

300 cycles
1 cycle

1 cycle

2 cycles

Need to enforce Order
fence instructions: lfence, mfence, sfence, cpuid

Flush + Flush

29

Voila

LLC

Step 0:Spy maps the shared
library, shared in the cache

Step 1:Spy flushes the cache
block

Flush + Flush

30

Voila

LLC

Step 0:Spy maps the shared
library, shared in the cache

Step 1:Spy flushes the cache
block

Step 2: Victim reloads the
cache block

Flush + Flush

31

Step 0:Spy maps the shared
library, shared in the cache

Step 1:Spy flushes the cache
block

Step 2: Victim reloads the
cache block

Step 3: Spy flushes the cache
block again

Voila

LLC

No sharing?

32

What If I do not share anything with you ??

Do not worry, I have Amazon Prime

Sorry:

Prime+Probe

33

LLC

33

Step 0:Spy fills the entire
shared cache

Prime+Probe

34

LLC

34

Step 0:Spy fills the entire
shared cache

Step 1: Victim evicts cache
blocks while running

Prime+Probe

35

Step 0:Spy fills the entire
shared cache

LLC

Step 1: Victim evicts cache
blocks while running

Step 2: Spy probes the cache
set

Voila

If misses then victim
has accessed the set

Notion of Time Gap

36

WAIT

PRIME

PROBE

VICTIM
ACCESS

~5K to 10K cycles

Inclusiveness

37

L1/L2

LLC

Miss

Inclusiveness

38

L1/L2

LLC

Miss
Cross-core back-invalidation

Inclusiveness

39

L1/L2

LLC

Miss

Attacker knows whether
victim has accessed a set or
not

Miss

Job of an attacker

40

CALIBRATION; FOR
LATENCY THRESHOLD

FIND OUT ADDRESSES
OF INTEREST

BITS OF INTEREST

Pause

41

Readings

● Flush+Reload: https://www.usenix.org/node/184416.
● Flush+Flush: https://arxiv.org/abs/1511.04594

42

https://www.usenix.org/node/184416
https://arxiv.org/abs/1511.04594

Source Code

https://github.com/0xd3ba/Flush-Reload

43

https://github.com/0xd3ba/Flush-Reload

Thanks

44

