
https://www.cse.iitb.ac.in/~biswa/

CS773:
Computer Architecture for
Performance and Security

Lecture 3: Timing Channel and Transient Attacks

https://www.cse.iitb.ac.in/~biswa/

No memory sharing?

2

What If I do not share anything with you ??

Do not worry, I have Amazon Prime

Sorry:

Prime+Probe

3

LLC

3

Step 0:Spy fills the entire
shared cache

Prime+Probe

4

LLC

4

Step 0:Spy fills the entire
shared cache

Step 1: Victim evicts cache
blocks while running

Prime+Probe

5

Step 0:Spy fills the entire
shared cache

LLC

Step 1: Victim evicts cache
blocks while running

Step 2: Spy probes the cache
set

Voila

If misses then victim
has accessed the set

Notion of Time Gap

6

WAIT

PRIME

PROBE

VICTIM
ACCESS

~5K to 10K cycles

Inclusiveness

7

L1/L2

LLC

Miss

Inclusiveness

8

L1/L2

LLC

Miss
Cross-core back-invalidation

Inclusiveness

9

L1/L2

LLC

Miss

Attacker knows whether
victim has accessed a set or
not

Miss

Thrashing
Entire LLC:
Questions
of interest

10

Extremely Slow pre-attack step: Think about an
8MB/16MB LLC

Why not thrash a group of addresses that are
mapped to the same set?

Is there an algorithm to find out the same?
Eviction set algorithm?

But what about virtual to physical address
translation? LLC will have the physical address.

How to trigger requests that will go to the same
set bypassing L1 and L2?

Attacker cannot control: LLC with 1024 sets

11

Tag Index
Block
Offset

VPN Page Offset

12 048

PPN Page Offset

12 032
Page Table

061632

What if we have huge pages

12

Tag Index
Block
Offset

VPN Page Offset

20 048

PPN Page Offset

20 032
Page Table

061632

Awesome. Now attacker can control all the accesses to a particular set.

What About?

13

Effect of cache replacement policy at
the LLC?

What if it is adaptive?

What if attacker’s access pattern is
predictable?

A hardware prefetcher can affect the
eviction set creation process?

Hardware Prefetching

14

$

Prefetcher

X+2

X+3

C
o

re X+3

❶

❷

❸

❹

❺
HIT

X+1

X

What About?

15

Effect of cache replacement policy at
the LLC?

Fool the replacement policy too.

What if attacker’s access pattern is
predictable?

Fool the prefetcher too.

Questions of interest

16

HOW GOOD IS
THE ATTACKER?

ASSUMPTIONS
AGILITY

(BANDWIDTH)

ADAPTIVE ACCURACY
STEALTHY

(DETECTOR
CANNOT DETECT)

Pause

17

How Practical?

18

Future is uncertain, if we do not take care of
present attacks, future may be worse

Transient
Execution

Attack

A speculative instruction may squash:
Affects microarchitecture state

A transient instruction will squash (will
not get committed)

A non-transient instruction will not
squash (eventually get
committed/retired)

Modern Processors: In-order fetch

20

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB

Modern Processors: Out-of-order Execute

21

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB

2. LOAD

3. LOAD
5. LOAD
4. MUL

1. SUB

Out of order execute

Modern Processors: In-order Commit

22

In-order Instruction Fetch
(Multiple fetch in one cycle)

In-order Completion
(commit)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
2. LOAD

3. LOAD
5. LOAD
4. MUL

1. SUB

Out of order execute

Modern Processors: In-order Commit

23

In-order Instruction Fetch
(Multiple fetch in one cycle)

In-order Completion
(commit)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
2. LOAD

3. LOAD
5. LOAD
4. MUL

1. SUB

Out of order execute

Reorder buffer (ROB)

1

2

3

ROB head

Modern Processors: Speculative Execution

24

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. BE

3. LOAD
4. LOAD
5. ADD

2. SUB 1

2

3

BE reaches ROB head and
then processor realized it is a mistake

Branch Predictor: TRUE

Speculative (wrong path)
instructions

4

Recent Intel processors have 352-entry ROBs

Modern Processors: Speculative Execution

25

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. BE

3. LOAD
4. LOAD
5. ADD

2. SUB 1

2

3

BE reaches ROB head and
then processor realized it is a mistake

Branch Predictor: TRUE

Speculative (wrong path)
instructions

4

Instructions 2, 3, and 4
Got squashed

Same happens in the case of a page fault, exception etc…

Spectre and Meltdown

26

Spectre in Action: Fasten Your Seat Belts

27

int CS773Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS773Array))

x = CS773Array[attacker]

y=MyArray[CS773Array[attacker]*512]

DRAM LOAD

DRAM LOAD

Branch Predictor and Speculative Execution

28

Branch predictor returns TRUE

int CS773Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS773Array))

y = MyArray[CS773Array[attacker]*512]

Branch Predictor and Speculative Execution

29

Branch predictor returns TRUE

Attacker has mis-trained it T T T T T T T T T T T

How? By using values less than 3 always

int CS773Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS773Array))

y = MyArray[CS773Array[attacker]*512]

Branch Predictor and Speculative Execution

30

Branch predictor returns TRUE

Attacker has mis-trained it

Processor is on the wrong-path

int CS773Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS773Array))

y = MyArray[CS773Array[attacker]*512]

Branch Predictor and Speculative Execution

31

Branch predictor returns TRUE

Attacker has mis-trained it

Processor is on the wrong-path

Branch resolution latency 200 cycles

int CS773Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS773Array))

y = MyArray[CS773Array[attacker]*512]

Within these 200 cycles ☺

32

CS773Array[4] is in L1/L2/L3

The address is in the cache

Yes, you guessed it right: F+R, P+P cache attacks

int CS773Array = [100, 200, 300];
int attacker = 4;
if (attacker < sizeof(CS773Array))

y = MyArray[CS773Array[attacker]*512]

After say 200 cycles

33

y = MyArray[CS773Array[attacker]*512]

LOAD MyArray[0] 60 ns
LOAD MyArray[512] 60 ns
LOAD MyArray[1024] 5 ns Bingo !! CS773Array[attacker] = 2

Processor realized it was a mistake and
squashed all wrong path instructions

But cache has the data

Meltdown: The O3 Curse!!

34

1. raise_exception();
2. // line below is never reached
3. secret=KernelArray[data*4096];

1. secret=KernelArray[data*4096];
2. raise_exception();

Out-of-order (O3) as
it has no dependency

Kernel Trap

What about page-fault?

Readings

● Last-Level Cache Side-Channel Attacks are Practical:
https://ieeexplore.ieee.org/document/7163050

● Spectre and Meltdown: https://meltdownattack.com/

35

https://ieeexplore.ieee.org/document/7163050
https://meltdownattack.com/

Logistics

Group/team: Do it ASAP. We will float papers on January 17.

Piazza Participation: ??

36

Thanks

37

