

CS773: Computer Architecture for Performance and Security Lecture 5: It's the Memory Stupid

https://www.cse.iitb.ac.in/~biswa/

DIMM

Row Buffer

DRAM

Capacity
Latency
Bandwidth
Power
Reliability
Security

• •

DRAM Addressing

2GB DRAM, 8 Banks, 16K rows, 2K Columns per bank

Cache Interleaving: Consecutive cache blocks in consecutive banks

Row (14 bits)	High Column	Bank (3 bits)	Low Col.	Byte in bus (3 bits)
	8 bits		3 bits	

Row Interleaving: Consecutive rows in consecutive banks

Row (14 bits)	Bank (3 bits)	Column (11 bits)	Byte in bus (3 bits)

DRAM Controller

DRAM Bandwidth

Names	Memory clock	I/O bus clock	Transfer rate	Theoretical bandwidth
DDR-200, PC-1600	100 MHz	100 MHz	200 MT/s	1.6 GB/s
DDR-400, PC-3200	200 MHz	200 MHz	400 MT/s	3.2 GB/s
DDR2-800, PC2-6400	200 MHz	400 MHz	800 MT/s	6.4 GB/s
DDR3-1600, PC3-12800	200 MHz	800 MHz	1600 MT/s	12.8 GB/s
DDR4-2400, PC4-19200	300 MHz	1200 MHz	2400 MT/s	19.2 GB/s
DDR4-3200, PC4-25600	400 MHz	1600 MHz	3200 MT/s	25.6 GB/s
DDR5-4800, PC5-38400	300 MHz	2400 MHz	4800 MT/s	38.4 GB/s
DDR5-6400, PC5-51200	400 MHz	3200 MHz	6400 MT/s	51.2 GB/s

High Bandwidth Memory (HBM)

- Base logic layer (blue), CPU and Memory glued by TSV
- Multiple DRAM chip layers
- Significantly higher bandwidth (200 to 800 GB/s)
- What is the problem then? Capacity $\ensuremath{\mathfrak{S}}$
- HBM3: 819.2 GB/sec Capacity: 24GB 😕

DRAM/DRAM-Controller for Performance

Heavily mined research area: DRAM scheduling, DRAM address mappers, fairness, QOS, prefetch awareness,

The Performance Perspective

• All of Google's Data Center Workloads (ISCA 2015):

Data Movement vs. Computation Energy

A memory access consumes ~1000X the energy of a complex addition

Data Movement vs. Computation Energy

• Data movement is a major system energy bottleneck

- Comprises 41% of mobile system energy during web browsing [2]
- Costs ~115 times as much energy as an ADD operation [1, 2]

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO'16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC'14)

Processing Near Memory

Move compute near memory

What compute to move? (simple functions) Mapping computation (heterogenous computing) ? Virtual memory ?

Non-volatile Persistent Memory

Two modes

Application mode: Non-volatile, app/OS can decide what/where.. Memory mode: Volatile, DRAM acts like a cache ⁽²⁾ More capacity Non-volatile LLC too ⁽²⁾ Write-latency is higher than volatile LLC ⁽²⁾₁₄

PAUSE

From Performance to Security

DRAM Row Shared $\ensuremath{\mathfrak{S}}$

Side Channel

Side-channel attacks

Row-hits: Fast access Conflicts: Slow access

Covert Channel

Covert-channel attacks

Something more: Integrity attacks

Rowhammer

Repeatedly opening and closing a row induces disturbance errors in adjacent rows

Rowhammer

"It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after" – Motherboard Vice

22

The Code Please

Avoid *cache hits* Flush X from cache

2. Avoid *row hits* to X - Read Y in another row

The code please

Why? Electromagnetic Coupling

Toggling the wordline voltage briefly increases the voltage of adjacent wordlines

Slightly opens adjacent rows \rightarrow Charge leakage

Two Days Before

Spechammer 😕

Cold boot attacks

Cool it

After 5 Seconds

30 Seconds

60 Seconds

300 Seconds Think about nonvolatile memory

Thanks