

CS773: Computer Architecture for Performance and Security Lecture 7: 10K Feet View on the Domain Specific Architectures(DSAs)

https://www.cse.iitb.ac.in/~biswa/

Thanks Moore (Moore's Law) Transistors doubling every 18 months 🙂 180 nm to 7nm 🙂

Three levels of cache, prefetcher, TLBs,

Multi-level BTBs, branch predictors

Speculative execution, O3 scheduling, 20-stage pipeline

Multi-threading

Multi-core

Performance, performance and performance !!

Dennard Scaling is dead

Power density used to be constant 🟵

So more transistors meaning more power \mathfrak{S}

Energy numbers:

LOAD/STORE: 150 pJ

32-bit addition:

7 pJ

8-bit addition: 0.2 pJ

Do we need them all?

COMPUTER ARCHITECTURE RESEARCH: LARGE SOFTWARE WRITTEN IN C/C++/FORTRAN GENERAL PURPOSE IN NATURE

WHAT ABOUT NEURAL NETS, VISION, AI, GRAPH ANALYTICS?

WE DO NOT NEED A POWERFUL GENERAL-PURPOSE PROCESSOR

INSTEAD, WE NEED A SUPER-EFFICIENT DOMAIN SPECIFIC COMPUTE ENGINE

SOFTWARE PORTABILITY 😕

DSA Mantra in 2020

- Use software controlled dedicated memory with no hierarchy ??
- More ALUs and memory units instead of microarchitecture optimizations
- Forget ILP and think about domain specific parallelism.
- Reduce the data type and size for high memory bandwidth
- Domain specific languages for DSA: TensorFlow for example

DNNs (Deep Neural Networks)

Computes the non-linear activation function of weighted sum of inputs.

E.g., image processing (does the image contain a dog) input:pixels, activation function: f(x)=max(x,0), can have many layers

Examples

Name	DNN layers	Weights	Operations/Weight
MLP0	5	20M	200
MLP1	4	5M	168
LSTM0	58	52M	64
LSTM1	56	34M	96
CNN0	16	8M	2888
CNN1	89	100M	1750

Training (learning) vs Inference

Once the neural architecture has been selected (#layers, architecture etc.)

Next step: learn the weights associated with each edge of neural network graph.

Most DNNs are supervised: training set to learn where data is preprocessed

Training vs Inference

TRAINING CAN TAKE WEEKS TO MONTHS 😳

INFERENCE: MILLION TIMES LESS TIME 😳 😳

Takeaway

Need: highly efficient compute engines that can perform matrix-multiply, vector-matrix-multiply, stencil computations

Google's TPU (Tensor Processing Unit)

TPU Architecture

- Host CPU sends TPU instructions 1 over the PCIe bus into the instruction buffer. Internal blocks are connected through 2048-bit paths.
- 2. Heart of the TPU: MMU (Matrixmultiply-unit)
- Products are stored in 4MB of 32-bit 3 accumulators.
- Non-linear functions are calculated. 4
- 5. Weights are fetched through weight fetcher.
- 6 Intermediate results are stored in a 24MB buffer, which serves as input to MMU again.
- Programmable DMA controller 7. transfers data to/from DRAM-unified buffer 12

TPU instructions (CISC 🙂, no branch instructions ③)

Read_Host_Memory

Read_Weights

MatrixMultiply

Activate

Writes_Host_Memory

TPU Microarchitecture

Philosophy: MMU should be busy

Reading from 24MB Unified Buffer 🟵

Expensive in terms of energy \mathfrak{S}

Systolic Arrays

A possible design

Usage

Pattern matching, filtering,

Given sequence of weights w1, w1, w3, and input sequence of x1, x2,

Result sequence: y1, y2,

y(i) = w1x1 + w2x2 +

Systolic Execution of MMU

Done

2-D collection of arithmetic units, operate independently

Independent computation of partial sum

Relies on data coming from multiple directions, arriving at cells at a regular intervals where it is combined

Data flows through an array as an advancing wave front, similar to blood being pumped in circulatory system 19

An Example

DSA Mantra and TPU

Use dedicated memories: 24MB buffer and 4MB accumulators

Invest resource in arithmetic units

Easiest form of parallelism: 2D systolic array

Reduce the data size: 8-bit integers

Domain-specific programming language: TensorFlow

Bottlenecks

- DRAM bandwidth, again ⊗
- Use high bandwidth memory
- We did not cover the system stack of TPU.

Try it out:

https://cloud.google.com/tpu/docs/tp us

Intel Crest (16-bit fixed point, 32X32 matrices)

Interposer

DNN to Vision

Google's Pixel Visual Core

• <u>https://blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/</u>

The flow

Hardware view (Image/stencil processor: Systolic)

Thanks