

CS773: Computer Architecture for Performance and Security Lecture 7: 10K Feet View on the Power-efficient Architecture

https://www.cse.iitb.ac.in/~biswa/

Dynamic: CV²f (frequency is also dependent on the voltage)

high frequency will also demand high voltage

Static: Leakage power

Dynamic Power

Effect of Frequency

4

A bit Deeper

DVS (Dynamic Voltage Scaling)

DFS Governors

Linux: cpufreq component (/sys/devices/system/cpu/): Performance, Powersave, Ondemand, Conservative, and Interactive

Hardware-managed P states (performance states)

Performance scaling ~ Frequency scaling

Per-core P states (PCPS)

.....

Static Power (Decay Cache)

Put k-ways into the sleep mode when memory activity is low (power gating). Decay Cache, State-destroying

Example: 8MB 16-way cache becomes 512kB 2-way (intel IvyBridge) • • • • • • • • • • • • •

Static Power (Drowsy Mode)

Drowsy mode: cache lines into lowpower mode (line retains the data but can't access it ⁽²⁾, drowsy-bit per cache line), State-preserving

Switched to normal mode: If cache line accessed again

DVFS and Security

More papers in the coming weeks

DVFS and Cache Attacks

DABANGG Attack Home Demo News FAQs Contac

DABANGG Attack

Time for fearless flush-based attacks

DABANGG

Read the Paper

10K feet view: We present DABANGG (meaning fearless), a set of refinements that make flush-based cache attacks resilient to system noise. Dynamic Voltage & Frequency Scaling (DVFS) is ubiquitous in modern processors, which results in frequent frequency change in the cores of the processor. This results in variable execution latency for instructions, which renders a set of thresholds chosen to distinguish a cache hit from a miss useless. We build upon this dynamism in frequency to make robust, noise-resilient attacks that are highly potent and easy to mount, requiring no supervisor privileges.

Cite the Paper

Source Code

To appear in WOOT 2022 https://www.cse.iitb.ac.in/~biswa/DABANGG.pdf 11

Performance and Power

Delay = runtime

Energy = Watts * runtime

EDP (Energy Delay Product) = Watts * runtime * runtime

ED²P and ED³P

Dark Silicon

Dark Silicon

• Due to the breakdown of Dennardian scaling the percentage of a silicon chip that can switc at full frequency is dropping exponentially wi each process generation (45nm to 22nm to 11nm);larger fractions of a chip's transistors become dark. RIP Multi-core systems 🛞

Dark Silicon (End of Dennard Scaling)

Source = ITRS 2008

Why did it happen? Piazza +1

One more Wall (Utilization Wall)

Power budgets may lead to scenarios where few (less than 20%) of the chip's transistors can be ON at a time.

The world of Single-ISA heterogeneous cores

ARM Big/Little

Computer Architecture

Power/Performance Tradeoff

Performance

Big/Little Multicore (Based on P-state)

Thermal/Co2 emission ⊗

Some other day!

Thanks