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Figure 1: LampPost and PipeSet relit using a light source with novel direction, color and intensity.

Abstract

Image based Relighting(IBRL) has attracted a lot of interest in the
computer graphics research, gaming, and virtual cinematography
communities for its ability to relight objects or scenes, from novel
illuminations captured in natural or synthetic environments. How-
ever, the advantages of an image-based framework conflicts with a
drastic increase in the storage caused by the huge number of ref-
erence images pre-captured under various illumination conditions.
To perform fast relighting, while maintaining the visual fidelity, one
needs to preprocess this huge data into an appropriate model.

In this paper, we propose a novel and efficient two-stage relighting
algorithm which creates a compact representation of the huge IBRL
dataset and facilitates fast relighting. In the first stage, using Singu-
lar Value Decomposition, a set of eigen image bases and relighting
coefficients are computed. In the second stage, and in contrast to
prior methods, the correlation among the relighting coefficients is
harnessed using Spherical Harmonics. The proposed method thus
has lower memory and computational requirements. We demon-
strate our results qualitatively and quantitatively with new gener-
ated image data.
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1 Introduction

The traditional way of synthesizing interesting imagery involves
specifying all the objects in the world and their interactions, which
can be termed the source description. An alternative way to de-
scribe the world is through the appearance description, also termed
Image-based Modeling and Rendering(IBR). Unlike traditional ren-
dering, IBR synthesizes realistic images from pre-recorded imagery
without a complex and long rendering process.

A key area of interest in computer graphics has been illumination
changes or relighting. Lighting design is one the most important de-
cisions artists and designer have to take, both for our real and virtual
world. Unfortunately, the ability to control illumination changes
is inherently difficult with pre-acquired images. If this process of
relighting can be made independent of the scene complexity, as
in image-based relighting(IBRL), the artist is saved an enormous
amount of time fine-tuning the illumination conditions to create the
desired effect. For completeness, we give a brief description of the
basic concepts of image-based relighting.

1.1 Image-based Relighting

Adelson [1991] proposed a seven dimensional plenoptic function
for evaluating the low-level human vision models. The plenop-
tic function models a 3-dimensional environment by recording the
light rays at every space location (Vx, Vy, Vz), from every possible
direction (θ, φ), over any range of wavelengths (λ) and at any time
(t), i.e.,

P = P (Vx, Vy, Vz, θ, φ, λ, t) (1)
Although the definition of the plenoptic function is very general, it
encapsulates all the dynamic effects, like motion, lighting changes
etc. into this single parameter t. Wong et al. [Wong and Heng 2004]
extends this plenoptic function to support relighting by extracting
the illumination component (L) from the aggregate time parameter
and explicitly specify it in the new formulation,

P = P (L, Vx, Vy, Vz, θ, φ, λ, t′) (2)

where, t′ is the time parameter after extracting out the illumination
component.



Figure 2: Snapshots of the LampPost, PipeSet and Lighter datasets under different lighting directions, sampled on a spherical grid (Fig 8).

Intuitively, the function tells us how the environment looks like
when illuminated by a distant point light source. The authors call
it the plenoptic illumination function. Since the newly introduced
dimension L is a direction, sampling this function along this di-
mension is about capturing images under different light directions.
Given a novel light vector, the desired image can be estimated by
interpolating samples, hence relighting the scene. A similar, but dif-
ferently parameterized formulation, Reflectance function [Debevec
et al. 2000] is a 8-dimensional function which takes measurement
of how materials transform incident illumination into radiant illu-
mination. Relighting is performed by multiplying the coefficients
of the reflectance function and the incident illumination.

The approach chosen by many IBRL techniques involves pre-
rendering (synthetic) or pre-acquisition (real) of a collection of im-
ages in which the lighting direction is systematically varied. If the
density of illumination is dense enough, then due to linearity of
scene radiance, images of the scene under complex illumination
can be computed simply by superposition of single light source im-
ages. Although now relighting is tractable, the collection of images
is typically too large both to store in memory and to synthesize
novel images in real-time (Debevec et al. [Debevec et al. 2000] use
2000 images and Koudelka et al. [Koudelka et al. 2001] use more
than 4000 images). If too few images are used, the quality of recon-
struction is compromised (blurring of specularities and inaccurate
shadows). The fundamental fact of IBRL data being closely related
to the surface reflectance makes it necessary to correctly model the
data into a compact and efficient representation. We discuss in the
next section ways in which researchers have coped with this issue.

1.2 Related Work

Compression: Several compression techniques have been pro-
posed to remove the data redundancy in image-based data. In [De-
bevec et al. 2000], images of each pixel’s reflectance function are
stored in the JPEG format and further processed in the compressed
domain. Lin et al. [Lin et al. 2002], on the other hand uses a 2D
DCT to compress the images of a pixel’s radiance values. Vector
quantization, entropy coding, and wavelet transform are some of the
widely used image compression techniques. However, these tech-
niques either compress the relighting data by small factor or (their
overuse) introduces artifacts.

Sampling: As a novel image is synthesized from a model built from
reference images, the quality of reconstruction depends on the sam-
pling density of reference images. Lin et al. [Lin et al. 2002] de-
rived a theoretical geometry-independent sampling bound for IBRL
based on radiometric tolerance. This satisfies the sampling needs
only of certain scenes; further, even with the guidance of a sam-
pling bound, the resource requirements are huge.

Global dimensionality reduction: Hallinan [Hallinan 1994] and
Ho et al. [Ho et al. 2005] used Principal Component Analysis(PCA)
to model for the variation of images due to illumination changes.
Nimeroff et al. [Nimeroff et al. 1994] showed that linear bases
(steerable functions) could be used for relighting of scenes under
complex, but diffuse illumination. Several variants (refer [Choud-
hury and Chandran 2006]) of representing variation of images due
to illumination has been analyzed and proposed in the past. The
desired images can be synthesized by linearly combining “eigen-
images” given a set of eigen-coefficients. Unfortunately, eigen-
coefficients cannot be related to a lighting direction by a simple
mathematical equation.

Wong et al. [Wong et al. 1997a; Wong and Leung 2003] and Sloan
et al. [Sloan et al. 2002] use spherical harmonics(SH) to model the
data. An interesting note about spherical harmonics is that the cor-
responding harmonic basis functions are analytical functions and
hence they do not need to be pre-computed and stored. On a differ-
ent note, Leung et al. [Leung et al. 2006] uses spherical radial basis
functions(SRBF) to model the IBRL data. Since SRBF is prone
to quantization noise, a complex constrained optimization problem
is solved for iteratively, to generate the SBRF weights. Though
the computation of SRBF functions are faster, the quality of results
achieved is lower than that using SH.

Regardless of the type of linear bases used, greater accuracy, in the
realm of low frequency lighting (sharp shadows and specularities),
in the renderings requires many bases. However, as the number of
bases increases so do the storage requirements and rendering time.

Local dimensionality reduction: When a complete image is con-
sidered, complex illumination effects such as cast shadows, spec-
ularities and caustics cannot be represented by a handful of lin-
ear basis functions. However, if these illumination effects are ana-
lyzed locally, i.e., at small regions within the image, it is possible
to model the variation within these regions ([Matusik et al. 2002;
Nayar et al. 2004; Nishino et al. 2001; Wood et al. 2000]). For a
region of a scene with simple illumination effects, lesser number of
bases would be needed than a region with complicated reflectances.
Since we would like to efficiently relight objects of all possible re-
flectances, therefore we chose this methodology for our relighting
algorithm. For the interested readers, refer [Choudhury and Chan-
dran 2006] for a detailed survey of IBRL techniques.

The rest of the paper is organized as follows, Contributions of our
work are stated in Section 1.3. In Section 2, we describe our novel
relighting algorithm; specifically, Section 2.1 and Section 2.2 dis-
cusses the two stages of our algorithm respectively, and Section 2.3
presents our final relighting (reconstruction) algorithm. Section 3
discusses the results generated and provides an overall evaluation
of our algorithm. Finally, we provide our conclusions in Section 4.



1.3 Contributions

In this paper, we tackle the complex problem of relighting a scene
with novel illumination. We provide an efficient and novel image
based relighting technique which exploits the above observations
(of local dimensionality reduction) and efficiently produces fast re-
alistic renderings. Specifically,

• We propose a two-stage algorithm for simultaneously exploit-
ing the correlations in the lighting domain and spatial domain
inherent in IBRL datasets. The output of the above algorithm,
image bases and relighting coefficients, are stored and used
for fast relighting.

• We provide three synthetic IBRL datasets, LampPost, PipeSet
and Lighter (Figure 2) which enables validation of our tech-
nique. The datasets are available for viewing and download at
www.cse.iitb.ac.in/biswarup/web/data/

2 The Algorithm

The input is a set of reference images with the same viewpoint, but
under different lighting directions sampled uniformly on a sphere
(Halton sampling [Wong et al. 1997b]) as illustrated in Figure 8.
Figure 2 shows example images of our dataset (LampPost, PipeSet
and Lighter), each illuminated by a single distant point light source.
Notice the specularities, highlights, and shadows in the renderings.

Our algorithm is composed of two components. First, exploiting the
correlation among pixels of an image, we compute a set of image
bases and their corresponding relighting coefficients. Second, ex-
ploiting the coherence among the computed relighting coefficients
we produce a reduced set of (spherical harmonic) relighting coeffi-
cients. Figure 3 diagrammatically illustrates our algorithm. Given a
novel lighting configuration, using the “lightweight” pre-calculated
image bases and spherical harmonic relighting coefficients, we ef-
ficiently reconstruct (relight) the scene.

2.1 Stage 1: Singular Value Decomposition

We first reorganize the input data to suit the needs of subsequent
processing. We have as input, a collection of n images of a scene
under varying lighting directions. Each is an image illuminated by
a single distant point source. We compute a mean image over all the
reference images and subtract it from each of them to generate a set
of images Ii. The mean extraction offers a more accurate computa-
tional base for further processing. Next, we divide all images into
m square blocks, each block containing p pixels (and then linearize
each of the m square blocks into a data vector). We now, create a
n × p matrix Ij as a collection of image blocks in which the kth

row corresponds to the jth block of image Ik. After computing a
low-dimensional approximation of each such block matrix Ij in the
scene using Singular Value Decomposition(SVD), we find a rank b
approximation to Ij (b � n) as

Ij ≈ U jW jV j (3)

where U j is a n× b matrix, W j is a b× b diagonal matrix and V j

is a b× p matrix.

We now split the singular values into two halves (taking square
roots) and multiply them to U j and V j , thereby evenly distribut-
ing the energy of singular values. We are therefore able to rewrite
Eqn. 3 as

Ij ≈ RjEj (4)

where Rj is a n× b matrix and Ej is a b× p matrix.

Let the matrix R (n ×m × b) be formed by stacking all of the m
Rj block matrices. We term R as the SVD relighting coefficient
matrix. Likewise, let the collection of eigen bases for all blocks
be denoted by E (b × m × p). We term E as the eigen (image)
bases. The choice of the above terminology (for R and E) is to
provide a physical interpretation of the SVD decompostion. Since
the dimension of an input reference image and an element of (the
stacked up) E is the same (Figure 3), b×m× p, it is appropriate to
term E as eigen (image) bases. Similarly, since R is a n ×m × b
matrix, its elements are indexed by the n lighting vectors and hence
is appropriately termed the relighting coefficients.

The creation of relighting coefficients R and eigen bases E is illus-
trated diagrammatically in Figure 3. The collection of submatrices
within R and E contain all the information needed to approximate
the collection of images corresponding to all the n lighting direc-
tions.

Discussion: The number of eigen bases (b) depends on the sur-
face reflectance and geometry of the scene. For determining the
number of eigen bases, we measured the peak signal-to-noise ra-
tio(PSNR) of the reconstructed images (by a multiplication of R
and E). From experimentation, we concluded that for correct re-
lighting, the value of b should be such that the variance of the de-
composition is 70%–90%.

Before the blockwise SVD procedure was applied, we had nmp
measurements and after the SVD, we have bmp elements in E (con-
sidering only the eigen bases), thus providing a compression ratio
of b/n; in general this is a significant saving since, for blockwise
SVD, we expect b � n with little compromise in the fidelity to
the original data. In the specific case of LampPost, the number of
images n = 1000, the number of blocks m = 128, the number
of pixels per block p = 1024 and the number of bases b per block
ranges from 10–300.

By using blocks, we have introduced the additional burden of keep-
ing track of R, consisting of nmb elements. In general, the storage
requirements of R are considerable. For example, in the case of
LampPost, 302MB was needed to store the eigen bases and relight-
ing coefficients. The extra burden of keeping track of the relighting
coefficient matrix R is tackled by exploiting the fact that there is
inter-block coherence among the m different image blocks. There-
fore, it is likely that the relighting coefficients for each of the blocks
are not linearly independent.

2.2 Stage 2: Spherical Harmonics

The relighting coefficients in R are indexed by the light vectors
(θ, φ), or rephrasing, R is a spherical function. Hence Spherical
Harmonics can be used to harness the above mentioned inter-block
correlation.

Spherical Harmonics: We transform the relighting coefficient
matrix R using spherical harmonics and the resultant spherical
harmonic coefficients are zonally sampled and quantized. Given
the standard parametrization of points on the surface of a unit
sphere into spherical coordinates (sin θ cos φ, sin θ sin φ, cos θ),
the spherical harmonics function is represented as:

Yl,m(θ, φ) =

{
Pl,mQl,m(cos θ) cos(mφ) if m>0;
Pl,mQl,−m(cos θ) sin(|m|φ) if m<0;
Pl,0Ql,0(cos θ)/

√
2 if m=0;
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Figure 3: Algorithm Flowchart: In the first stage (SVD), the input reference images are decomposed to eigen image bases E and relighting
coefficients R (Section 2.1). The coherence among relighting coefficients R are further harnessed using Spherical Harmonics (Section 2.2).

Pl,m =

√
(2l + 1)

(2π)

(l − |m|)!
(l + |m|)!

and

Ql,m(x)=

{
(1− 2m)

√
1− x2Qm−1,m−1(x) if l=m;

(2m + 1)xQm,m(x) if l=m+1;
2l−1
l−m

xQl−1,m(x)− l+m−1
l−m

Ql−2,m(x) otherwise;

and Q0,0(x) = 1.

Ql,m are the associated Legendre polynomials, Pl,m is a scaling
factor and l is the degree of the spherical harmonic representation.
Please note that m, in the context of SH, is in no way related to
the m blocks in any image Ii (Section 2.1). The spherical function
is projected into spherical harmonic coefficients by integrating the
product of the former and the spherical harmonic function Yl,m.
This integral is evaluated using Monte Carlo integration.

Cl,m =

∫ 2π

0

∫ π

0

R(θ, φ)Yl,m(θ, φ) sin θdθdφ (5)

or alternatively [Green 2003],

Ck =
4π

n

n∑
i=1

R(xi)Yk(xi) (6)

where n is the number of lighting directions (as before) in the il-
lumination space (θ, φ) and xi is the flattened array of these il-
lumination directions. R(θ, φ) (or Rk) are the sampled SVD re-
lighting coefficients, coefficients Cl,m (or Ck) are the spherical
harmonic coefficients to be zonally sampled, quantized and stored

for relighting. To reconstruct the approximated relighting coeffi-
cients R∗(θ, φ), we reverse the process and sum scaled copies of
the corresponding spherical harmonic functions.

R∗(θ, φ) =

lmax∑
l=0

l∑
m=−l

Cl,mYl,m(θ, φ) (7)

where (lmax +1)2 is the total number of SH coefficients stored; for
Eqn. 6,

R∗(xi) =

M∑
k=1

CkYk(xi) (8)

where M= (lmax + 1)2, is the total number of SH coefficients
stored.

Discussion: Increasing the number of SH relighting coefficients
increases the fidelity, but also with increasing computation and stor-
age requirements. The low-order spherical harmonics are responsi-
ble for the diffuse component of illumination. On the other hand,
the higher-order harmonics are responsible for specularities, high-
lights and shadows. The optimal number of SH coefficients there-
fore depends on the image content.

To objectively evaluate the quality of spherical harmonic compres-
sion, we measure the peak signal-to-noise ratio(PSNR) against the
number of coefficients used for encoding. We observed that in most
cases, a degree (lmax, Eqn. 7) of 10–25 was enough to maintain a
fair balance between visual fidelity, storage and computation.

Before applying SH on R, we had nmb measurements and after
SH, we have Mmb (Eqn. 8) elements in Cl,m (or Ck). We get a
theoretical compression gain of n/M . In the case of LampPost, the
number of images n = 1000 and M was in the range of 100–600,
depending on the illumination effects.
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2.3 Fast Relighting

All the data needed to finally render the image under a new speci-
fied illumination are stored in the matrices E and Ci. These matri-
ces are compact, have low storage requirements and facilitate fast
relighting of the scene. Here, we detail the steps needed to ren-
der an novel image under a new specified (directional) light source
L(θ′, φ′).

To render an image of the scene as if it were illuminated by
a new light source L(θ′, φ′), we first calculate the spherical
harmonic functions Yl,m(θ′, φ′) and then compute the product
Cl,mYl,m(θ′, φ′), the reconstructed relighting coefficients (R∗).
We then compute the product R∗E, which essentially is the novel
image of the scene under the specified lighting (In Figure 4, we di-
agrammatically illustrate this process). In the case of using a high-
dynamic range environment map as the new lighting source, each
pixel (or a set of them) corresponds to one of the n lighting direc-
tions in the original collection of images.

Our algorithm can also be applied for relighting in the case of a po-
sitional light source, if the physical coordinate of the surface point
associated with every pixel is available. Given the position of the
positional light source, the corresponding lighting vector for every
pixel can be calcuated [Wong and Heng 2004]. These lighting vec-
tors are then used to compute spherical basis functions for every
pixel, which further facilitates the computation of the correspond-
ing relighting coefficients R. Relighting can then be performed as
specified above.

Color Images – In the case of color images, there is an image
for every color channel and so, the number of images specified by
n becomes 3n. We perform both stages (SVD and SH) of the re-
lighting process on each color channel separately. As there is a lot
of redundancy in the color channels from image to image, we keep
the number of eigen bases b and the number of SH relighting coef-
ficients M fixed.

3 Implementation and Results

The two-stage relighting algorithm was implemented on a Intel 2.4
GHz processor with 1Gb of RAM. We generated two new IBRL

datasets, LampPost and PipeSet for purposes of our experimenta-
tion. Both the datasets were generated by uniformly sampling a
sphere into 1000 and 250 sample points respectively (see Figure 8)
using Halton points [Wong et al. 1997b], which have been proved
[Cui and Freeden 1997] to generate evenly distributed and strat-
ified samples on the surface of a sphere. The rendering of the
datasets was performed with radiosity computations using POV-
Ray. The resolution of an image in the datasets LampPost, PipeSet
is 512× 256 and 512× 512 respectively.

For purposes of comparison, we chose two commonly used stan-
dard image based relighting algorithms,

1. Two-stage SVD(2S-SVD) [Nayar et al. 2004]: The first stage
of this technique is similar to the first stage (Section 2.1) of
our algorithm. In its second stage, SVD is applied to capture
the coherence among the relighting coefficients.

2. Illumination-adjustable Images(IAI) [Wong and Leung 2003]:
In this technique, every pixel, illuminated with light directions
sampled on a sphere, is considered a spherical function and
spherical harmonics is used to model each of them.

We chose three new lighting configurations and rendered both our
models, LampPost and PipeSet under the same using POV-Ray. Un-
der the same three lighting configurations, we performed experi-
ments using our and both the above mentioned algorithms. In sec-
tion 3.1 and section 3.2, we detail the results obtained from these
experiments. Figure 5 and Figure 6 illustrates some of the relit im-
ages corresponding to the experiments performed.

3.1 Our Algorithm vs. Two-stage SVD

All reference images were divided into blocks of size 32 × 32 be-
fore processing. For the purpose of evaluation and comparison, we
implemented the Two-stage SVD. In Table 1, we observe that in the
case of LampPost and PipeSet, our relighting technique has much
lesser storage requirements(Size). We also perform much faster re-
lighting as compared to Two-stage SVD. Note that the total relight-
ing time scales up (for Two-stage SVD) when we consider multiple
light sources for relighting. The time taken to pre-process(Pre-P)
the input data is more in our case but it is a one-time offline pro-
cess, hence is independent of the final relighting time.



Our Algorithm Two-Stage SVD IAI
Size(Mb) Pre-P.(sec) Relight(sec) Size Pre-P. Relight Size Pre-P. Relight

LampPost 1 130 4206.3 7.2 477 3736.3 29.0 513 34069 28.38
LampPost 2 419 5883.3 15.8 477 3871.4 28.8 513 55873 38.52
LampPost 3 144 2448.5 5.3 477 2195.4 19.4 513 56850 40.52
PipeSet 1 127 649.9 17.4 336 630.5 25.2 347 4566 42.31
PipeSet 2 142 745.5 18.5 336 645.4 25.86 661 11328 60.9
PipeSet 3 129 445.9 10.6 336 466.2 18.0 402 3546 31.74

Table 1: Detailed results of the experiments performed using Our Algorithm, Two-stage SVD and IAI. Pre-P.(sec) is the total time taken
(in seconds) by each technique to pre-process the input images and create a corresponding appropriate model. Size(Mb), in each case,
represents the size of the computed model from the images (after the pre-processing step). This (model) is kept in memory for relighting
purposes. Relight(sec) is the time taken (in seconds) to perform final relighting of the scene under a novel illumination.

(a) Original Image (b) Relit using our Algorithm (c) Relit using 2S-SVD (d) Relit using IAI

(e) Original Image (f) Relit using our Algorithm (g) Relit using 2S-SVD (h) Relit using IAI

Figure 5: Relighting PipeSet under two different novel illuminations. Figure 5(a),5(b),5(c),5(d) is a set under one illumination and, Fig-
ure 5(e),5(f),5(g),5(h) is the other set. Our algorithm produces an image which has almost no perceivable difference with the original image.
Note the specular highlights, glossiness and shadows. For quantitative details of these results, see respective entries for Pipset 1 and Pipset
3 in Table 1.

For the same number of bases, SVD has a slightly higher PSNR
as compared to Spherical Harmonics. However, the tradeoff is in
terms of, firstly, large storage requirements (in this case, two basis
sets corresponding to the two SVD and a corresponding set of re-
lighting coefficients) as compared to our algorithm (one basis set
and a corresponding set of relighting coefficients), and secondly,
slower final relighting.

3.2 Our Algorithm vs. IAI

We implemented [Wong and Leung 2003] (sans the discrete wavelet
transform stage, to avoid slowing up relighting caused by the addi-
tional computation required during the decoding process) and used
it for comparison. We observe that our algorithm clearly out per-

forms (storage, final relighting and pre-processing time) IAI (see
Table 1). IAI models every pixel (under input lighting conditions)
as a spherical function using spherical harmonics. In other words,
only the intra-pixel correlations are modeled. In addition, since
spherical harmonics provides a suboptimal representation of the
data, IAI needs to compute and store a huge number of relight-
ing coefficients to achieve even comparable results in terms of the
illumination effects and PSNR. On the other hand, our algorithm
efficiently model the inter-pixel correlations in the first stage using
SVD, and then model the intra-pixel coherence (among relighting
coefficients) using spherical harmonics. Therefore, we need to store
(comparitively) lesser number of bases images and relighting coef-
ficients. This facilitates lesser storage requirements and enables
faster relighting.



(a) Original (b) Our Algorithm (c) 2S-SVD (d) IAI (e) Original (f) Our Algorithm (g) 2S-SVD (h) IAI

Figure 6: Relit LampPost under two different illuminations. Figure 6(a),6(b),6(c),6(d) are images under one lighting direction and, Fig-
ure 6(e),6(f),6(g),6(h) is the other set of images under a different lighting. Shadows, the desired sharpness and various illumination effects
are faithfully reproduced. For quantitative details, see respective entries for Lampost 1 and Lampost 2 in Table 1.

Figure 7: Relit Lighter under four different illuminations. Each set consists of the original (left) and the relit image (right) of the Lighter
under a different illumination direction. All relit images have PSNR>30. For details, refer Section 3.3.

3.3 Discussion

For purposes of validation, we also generated and performed our
experiments on an IBRL dataset of a translucent and refractive ob-
ject Lighter. We sampled the Lighter under 1000 lighting directions
and performed relighting on it under novel lighting directions (Fig-
ure 7). We do observe some blockiness in the shadows produced,
though the other illumination effects are reproduced faithfully. Due
to the complex nature of the Lighter and its illumination effects,
we can tackle artifacts (and all effects) by increasing the input sam-
pling density and the number of basis functions (both, for SVD and
SH). To create correct and realistic rendering for all objects produc-
ing complex illumination effects, such as caustics, refraction, soft
shadows, we sample the object densely and then process the data
appropriately.

Our algorithm is amenable to a GPU implementation. Each block
could be considered as an independent entity since all processing
(both stages of our algorithm, SVD and SH and relighting) is per-
formed on each block independently. Computing spherical basis
functions takes some time, especially in the context of positional
light sources where distinct spherical basis functions have to be
computed for each pixel. However SH basis function evaluation can
be really sped up by using hardware texture lookup (cube-maps) of
a graphics processing units(GPU). Using these cubemaps and the
inherent parallelism of the “state-of-the-art” GPUs, we could pro-
cess all blocks simultaneously and thereby perform relighting in
realtime.



Figure 8: Sample points on the surface of a sphere denotes point
light sources used for illuminating the object/scene.

4 Conclusion

In this paper, we propose a novel two-stage IBRL technique, which
tackles the traditional problem of huge storage and computational
resource requirements. We apply SVD to capture the inter-pixel
correlations, producing a set of eigen bases images and corre-
sponding relighting coefficients in Stage 1, and in Stage 2, we
further model the intra-pixel correlations among the relighting co-
efficients using Spherical Harmonics and reduce them to a com-
pact set of SH relighting coefficients. Fast relighting can then be
performed with single/multiple light sources. Three new IBRL
datasets, LampPost, Pipset and Lighter for the purpose of exper-
imentation have been generated and experimental results validate
our technique. The datasets are available at http://www.cse.
iitb.ac.in/biswarup/web/data/.
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