A Framework for Highly-Available Session-Oriented
Internet Services

Bhaskaran Raman and Prof. Randy H. Katz, {bhaskar,randy}@cs.berkeley.edu
CS/EECS Department, U.C.Berkeley, CA 94720, U.S.A.

Robustness and continued service to the end-user in the face of failures are crucial for Internet
services. Existing methods of replication and dynamic server selection are targeted for short-
lived sessions (most web transactions) — these deal only with the initial choice of a server
instance. For services with long-lived client sessions, monitoring the performance and liveness
of the initially chosen server instance is important for end-to-end performance. Applications
can benefit from dynamic session-transfer from one server instance to another when there is
poor performance or failure. Examples of such applications include: audio/video transcoding
proxies, Internet video-on-demand, and game servers.

Building highly-available session-oriented services requires monitoring and fail-over mecha-
nisms — this is the focus of our work. Our goal is to provide a framework for detecting and
handling failures at different levels: process/machine failure, site-failure, or network partition.
For interactive applications, the sessions have to be re-instantiated quickly on failure so that
the user sees minimal interruption — this is an important consideration.

In this work, we consider only stateless services — those that do not build up state during the
session. The examples given earlier fall under this category. Although the monitoring frame-
work will be useful for “stateful” services as well, moving live-sessions has different semantics
when there is state involved — session transfer would imply state transfer.

Current cluster-based approaches to high availability do not consider session-transfer for long-
lived sessions. There exists no current mechanism for monitoring distributed service replicas.

In our framework, service clusters are deployed by independent service providers and are dis-
tributed over the wide-area — clusters are the unit of replication. They form peering relation-
ships amongst themselves. Peer clusters monitor each others’ performance and liveness and
serve as backups for one another. Such monitoring is done using periodic heart-beats, and
timeouts are used to detect failures at the cluster level. Furthermore, each cluster collects
information about the performance of its clients. The session is transferred to a peer cluster
on detecting poor performance, or a cluster /network-level failure.

To handle process and machine-level failures, known intra-cluster monitoring mechanisms are
used. The advantage of this approach is that the more common failure modes (process/machine
failures) are handled within the tightly controlled cluster environment. Another advantage of
this cluster-based peering model is that the monitoring overhead (in terms of heart-beats) is
amortized over an entire cluster. Furthermore, a cluster environment allows aggregation of
client performance information based on parameters like client location — this can then be used
to decide the “best” peer-backup-cluster for a given client.

There are several challenging issues in the context of this framework that we plan to explore.
There needs to be a way for independent clusters to discover each other, and use policy and
network topology information to decide to peer. With respect to the monitoring mechanisms,
the challenge is to design one which can detect failures quickly, and do so reliably — without
false alarms.

The requirement for robust session-oriented services arose in the context of transcoding ser-
vices for enabling communication between heterogeneous devices in a hybrid network (the
ICEBERG project — http://iceberg.cs.berkeley.edu/). Communication services have especially
stringent requirements on robustness and resilience to failures — as exemplified by the telephone
system today. We have a prototype transcoding service — we are currently implementing the
proposed mechanisms on top of this to study the trade-off between service re-instantiation
time, monitoring overhead, and the amount of backup pre-provisioning required.



