Revisiting MAC Design for an 802.11-based Mesh Network

Bhaskaran Raman

Department of CS&E Indian Institute of Technology – Kanpur

Kameswari Chebrolu

Department of ECE, Cal-IT2 University of California at San Diego

http://www.cse.iitk.ac.in/users/braman/dgp.html http://www.iitk.ac.in/mladgp/

HotNets-III, 16 Nov 2004, San Diego, CA, USA

802.11 Mesh Networks

- Community networks
- Campus networks
- Rural access networks
 - Using 802.11 for *low-cost* long-distance access
 - Examples:
 - Djurslands, Denmark: http://www.djurslands.net
 - Berkeley TIER project
 - Digital Gangetic Plains, IIT Kanpur

Digital Gangetic Plains

(1) Long-distance, Point-to-Point links; (2) Multiple interfaces per node

802.11 MAC Performance

- Exposed node problem prevents parallel transmissions
- (1) Long-distance links:
 - Slot-time, DIFS, ACK timeout have to be scaled
 - Immediate ACK, RTS/CTS are inefficient
- (2) When there are multiple interfaces per node?

Using Multiple Channels

- 802.11b has three non-overlapping channels

- If spectrum is licensed, using just one channel is better
- Even otherwise:
 - May want to use just one channel for the backhaul links, and rest for local access
 - Even if 2 (3) channels are available, graph may not be 2-edge (3-edge) colourable

Do Multiple Interfaces Help?

Exposed *interface* problem still persists, within a node! Ideally, links at a node should operate independently CSMA/CA inherently allows only one link operation per node *Problems:* (a) *Immediate ACK,* (2) *CS back-off*

SynOp: SynRx, SynTx

- Links at a node operating simultaneously, synchronously (on the same channel)
- Is this feasible? Yes, under certain conditions

SynOp: Experimental Verification

Used broadcast packets on both links (SynRx, SynTx)
6.5 Mbps with and without simultaneous operation
SynTx also verified – using antenna diversity for the setup
Experiments along with: A. R. Harish & Sreekanth Garigala

2-P: A MAC on top of SynOp

- 2-P: each node switches between SynRx and SynTx
- When a node is in SynRx, its neighbours are in SynTx, and vice versa

- SynRx + SynTx = 1 round
- Require a bipartite topology

Some Remarks on 2-P

 2-P can be implemented without tight global synchronization!

- Timeout mechanism to deal with packet losses
- Firmware, proprietary driver software (e.g. Atheros), or driver-level implementation possible
 - Host-AP modifications tested for single-link
- Other issues: topology, TCP performance

Summary and Conclusions

- 802.11 mesh networks are popular
 - Attractive option for low-cost rural networking
- 802.11 MAC not good for long-distance, point-to-point links
- 2-P achieves maximal efficiency
 - Can be used in any wireless back-haul network
 - Dependence on PHY is minimal
- Can be implemented with firmware/driver modifications
 - Preserves low-cost of 802.11

Backup Slides

Some Numbers

Antenna	RTS/CTS	-	2-hop	-
	used?	(Mbps)	(Mbps)	(Mbps)
Omni	Yes	4.5	2.2	1.5
Omni	No	6.1	3	2
Dirnl.	Yes	4.5	2	1.9
Dirnl.	No	6.1	2.8	2.7

- Throughput of saturating UDP traffic
- Simulations using ns-2 (S. Roy and Ashwini)
- 3-hop shows exposed node problem (omni)
- Exposed interface problem with directional antennae

2-P without Synchronization

- 2-P can be implemented without global time synchronization!
 - Local (loose) synchronization is sufficient, and efficient

Wait until end of transmission from all neighbours, switch immediately

Wait until end of transmission to all neighbours, switch immediately

Loose Synchronization in 2-P

- Not necessary that all nodes in a partition are in the same phase
 - Does not matter
- Robust to packet CRC errors
- What about packet loss?
 - Timeout mechanism needed

Timeout Mechanism in 2-P

- Timer started at a node on entering SynRx
 - On timer expiry, enter SynTx anyway
 - Cancel timer if signal received from all neighbours
- Timeout value?
 - Larger than propagation+system delays

Self-Synchronization in 2-P

- Arbitrary possibilities of simultaneous timeouts, loss of synchrony, etc.
- Resync within 1 round

Note: diagram ignores system/propagation delays

2-P Implementation

- How to implement on off-the-shelf 802.11?
- Minimal changes required
 - Get rid of MAC-level ACK
 - Do away with CSMA/CA backoffs
- Firmware, or proprietary driver software (e.g. Atheros), or driver-level
 - Host-AP modifications tested for single-link
- Some other issues:
 - Topology construction
 - TCP over 2-P