# Design, Implementation and Evaluation of Elements of BriMon: A Sensor Network Based Railway Bridge Monitoring System

### Phani Kumar Valiveti

Department of Electrical Engineering,

IIT Kanpur

under guidance of

Prof. Kameswari Chebrolu & Prof. Bhaskaran Raman

- Introduction
- Thesis contributions
- Architecture overview
- Past & related work
- Design and implementation of elements
- Experiments and results
- Conclusion and future work

- Introduction
- Thesis Contributions
- Architecture Overview
- Past & Related Work
- Design and Implementation of Elements
- Experiments & Results
- Conclusion and Future Work

### Introduction

- Motivation
- Problem statement
- Constraints and challenges

# Introduction

- Motivation
- Problem statement
- Constraints and challenges

### Motivation

- Bridges a crucial part of railways
   □Indian Railways has over 127,000 bridges
- Railway bridges safety assurance
  - □40% of Indian railway bridges are 100 yrs old
  - □Indian Railways budgets about Rs.7 Billion per annum
- Existing techniques
  - □Wired
  - □Require technical support on-site
  - □Bulky equipment and long setup time

### Introduction

- **✓** Motivation
- Problem statement
- Constraints and challenges

### **Problem Statement**

"To build an easily deployable, scalable and maintenance-free system that measures the structural vibrations of a bridge located at a remote place and transfer the data to a repository"

### Introduction

- ✓ Motivation
- ✓ Problem statement
- Constraints and challenges

# Constraints and Challenges

- Constraints on vibration data
  - □ *Frequency* Content

$$10.25 - 20 \text{ Hz}$$

□ Sampling *rate* requirement



# Constraints and Challenges

- □ Time *synchronization* across readings
  - Within 5ms
- □ Duration of data collection
  - 5 cycles each of free and forced vibrations
    - => 10 cycles (of 0.25 Hz) = 40 seconds

# Constraints and Challenges

- Limited power supply
  - □ Calls for *duty cycling*
- Event detection
- Node failures
  - □ Need for a *dynamic topology*
- Limited platform capabilities sensor motes
  - □Program and data memory
  - □ Communication range
  - □ Computational power

- ✓ Introduction
- Thesis Contributions
- Architecture Overview
- Past & Related Work
- Design and Implementation of Elements
- Experiments & Results
- Conclusion and Future Work

### Thesis Contributions

- Routing Protocol Topology formation
- Time synchronization
- Sleep/Wakeup Duty cycling
- Event Detection Train arrival detection
- Integration

- ✓ Introduction
- ✓ Thesis Contributions
- Architecture Overview
- Past & Related Work
- Design and Implementation of Elements
- Experiments & Results
- Conclusion and Future Work

































### **Architecture Overview**

- Salient components
  - □Network of sensor nodes Routing protocol
  - □ Time synchronization protocol
  - □Sleep/Wakeup
  - □ Event Detection
  - □ High fidelity data acquisition
  - □Reliable Data Transfer Transport protocol
  - □Multi-channel mobile data transfer
  - □ Data Analysis

- ✓ Introduction
- ✓ Thesis Contributions
- ✓ Architecture Overview
- Past & Related Work
- Design and Implementation of Elements
- Experiments & Results
- Conclusion and Future Work

### Past and Related Work

- Past Work by Hemanth & Nilesh [Fig]
  - □ Protocols not tested
  - □ Design had loopholes
- Disadvantages
  - □Use of different types of nodes (hardware)
  - □No scalability
- Past Vs. Present Architecture
  - □All the nodes are identical in hardware
  - □ Clustering
  - □ Scalability

### Past Architecture



### Past and Related Work

- Routing protocols
  - □ LEACH Adaptive Clustering
  - □ SPIN Information via Negotiation
  - □MintRoute
- Irrelevance to BriMon
  - □Most protocols not implemented
  - □Nodes are always ON
  - □No *end* phase

### Past and Related Work

- Time synchronization protocols
  - □RBS Broadcast Synchronization
  - □TPSN message *exchange*
  - □FTSP Flooding
- Irrelevance to BriMon Long synchronization intervals

- ✓ Introduction
- ✓ Thesis Contributions
- ✓ Architecture Overview
- ✓ Past & Related Work
- Design and Implementation of Elements
- Experiments & Results
- Conclusion and Future Work

Design and Implementation of Elements

# Design and Implementation of

### Elements

- Routing protocol
- Time synchronization protocol
- Sleep/Wakeup

Design and Implementation of Elements

# Design and Implementation of Elements

- Routing protocol
- Time synchronization protocol
- Sleep/Wakeup

# Routing Protocol

- Purpose recap
- Basis Link stability experiments
  - □ RSSI Vs Error rate [graph]
  - □ RSSI stability [graph]
  - □ Error rate stability [graph]
  - □ Takeaway
    - ☐ Below a threshold, RSSI experiences temporal variation
    - Temporal variation in error rate
    - Tuse stable links
- Challenges to be addressed
  - □ Node failures
  - □ Support for low duty-cycle
  - □ Children information at every node needed

## RSSI Vs Error rate



[Back]

#### Design and Implementation of Elements

## **RSSI** stability



[Back]

### **Error Rate Stability**



[Back]

## Routing Protocol

Algorithm – Centralized 2-Phase Routing



### Routing Protocol













Design and Implementation of Elements

#### Design and Implementation of

#### Elements

- ✓ Routing protocol
- Time synchronization protocol
- Sleep/Wakeup

- Purpose recap
  - □ Application need
  - □Sleep/Wakeup



Synchronizing two nodes





- Synchronizing a cluster
  - □Problem with random flooding Flow control
  - □TDMA scheme
    - Nodes know about their slots from routing tree
    - Synchronization on receiving *time-sync* message from parent
    - Only non-leaf nodes in the tree need to transmit time-sync messages











A Node that is timesynchronized (to node 1)



A Node that is not synchronized

Design and Implementation of Elements

#### Design and Implementation of

#### Elements

- ✓ Routing protocol
- ✓ Time synchronization protocol
- Sleep/Wakeup

#### Sleep/Wakeup

Division of time into Epochs



Wakeup alarm timer value:

$$X = (\frac{currentGlobalTime}{SleepWakeupPeriod} + 1) * SleepWakeupPeriod - currentGlobalTime$$
 
$$currentGlobalTime = LocalTime + Offset.$$

Wakeup times should be synchronized

#### Outline

- ✓ Introduction
- √ Thesis Contributions
- ✓ Architecture Overview
- ✓ Past & Related Work
- ✓ Design and Implementation of Elements
- Experiments & Results
- Conclusion and Future Work

- Event detection experiments
- Evaluation of Routing protocol
- Evaluation of Time synchronization protocol

### Experiments and Results

- Event detection experiments
- Evaluation of Routing protocol
- Evaluation of Time synchronization protocol

### Event detection experiments



#### Event detection experiments

- Results
  - □ Maximum range
  - □Results
    independent
    of speed



### Event detection experiments

Implication – Sleep Duration

| Event Signaler<br>type | Max Range<br>obtained | Sleep<br>Duration at<br>54 KMPH | Sleep<br>Duration at 80<br>KMPH |
|------------------------|-----------------------|---------------------------------|---------------------------------|
| 802.15.4               | 450 m                 | 30.0 s                          | 20.2 s                          |
| 802.11                 | 800 m                 | 53.3 s                          | 36 s                            |

### Experiments and Results

- ✓ Event detection experiments
- Evaluation of Routing protocol
- Evaluation of Time synchronization protocol

### **Evaluation of Routing protocol**

- Motive
- Setup
- Threshold of -75dBm for good links
- Duration of experiment 7hrs



### **Evaluation of Routing protocol**

Frequently formed tree



#### **Evaluation of Routing protocol**

 Results & Implications □Same topology for 99% of the time Infrequent routing would suffice  $\square$  All the links are good (RSSI > -75dBm) Terror rates close to 0% □ Most of the nodes have direct link to root  $\square$  Low values of  $t_{ps}$ □ Average duration of routing: 567ms Maximum duration: 819ms, Std Dev: 51ms Supports low duty cycle operation

### Experiments and Results

- ✓ Event detection experiments
- ✓ Evaluation of Routing protocol
- Evaluation of Time synchronization protocol

# Evaluation of Time synchronization protocol

- Measurement of t<sub>ps</sub>
- Measurement of t<sub>Δ</sub>

# Evaluation of Time synchronization protocol

- Measurement of t<sub>ps</sub>
- Measurement of t<sub>△</sub>

## Measurement of t<sub>ps</sub>

Setup



## Measurement of t<sub>ps</sub>

- 6 non-leaf nodes
- Slot time 12ms
- 3 *time-sync* messages from each node
- t<sub>ps</sub> 80ms
- $t_{pc} = t_{ps} = 80 ms$

| Sender<br>Address | Time Stamp at<br>Logger<br>(in seconds) | Time after start<br>(in seconds) |
|-------------------|-----------------------------------------|----------------------------------|
| 1                 | 1330.662811                             | 0.000000                         |
| 1                 | 1330.667725                             | 0.004914                         |
| 1                 | 1330.672394                             | 0.009583                         |
| 5                 | 1330.677185                             | 0.014374                         |
| 5                 | 1330.681915                             | 0.019104                         |
| 5                 | 1330.686432                             | 0.023621                         |
| 10                | 1330.691284                             | 0.028473                         |
| 10                | 1330.695953                             | 0.033142                         |
| 10                | 1330.700684                             | 0.037873                         |
| 9                 | 1330.705353                             | 0.042542                         |
| 9                 | 1330.710083                             | 0.047272                         |
| 9                 | 1330.714783                             | 0.051972                         |
| 4                 | 1330.719604                             | 0.056793                         |
| 4                 | 1330.724426                             | 0.061615                         |
| 4                 | 1330.729126                             | 0.066315                         |
| 3                 | 1330.733826                             | 0.071015                         |
| 3                 | 1330.738403                             | 0.075592                         |
| 3                 | 1330.742737                             | 0.079926                         |

# Evaluation of Time synchronization protocol

- ✓ Measurement of t<sub>ps</sub>
- Measurement of t<sub>Δ</sub>

## Measurement of t<sub>\(\Delta\)</sub>

Setup



## Measurement of t<sub>\(\Lambda\)</sub>

- Slot time of 12ms
- 3 *time-sync* messages from each node
- Tree depth of 3
- $t_{\wedge}$  0.183 ms
  - = 6 clock ticks of 32KHz clock

| Global Time Node's Local |           |           |  |  |
|--------------------------|-----------|-----------|--|--|
| Node                     | Stamp     | Time      |  |  |
| 1                        | 24.841461 | 24.841461 |  |  |
| 2                        | 24.841431 | 24.812500 |  |  |
| 3                        | 24.841522 | 23.534668 |  |  |
| 4                        | 24.841461 | 24.792267 |  |  |
| 5                        | 24.841492 | 23.577576 |  |  |
| 6                        | 24.841492 | 24.845734 |  |  |
| 7                        | 24.841431 | 24.816315 |  |  |
| 8                        | 24.841553 | 17.672333 |  |  |
| 9                        | 24.841522 | 16.461029 |  |  |
| 10                       | 24.841492 | 17.670959 |  |  |
| 11                       | 24.841614 | 17.658264 |  |  |
| 12                       | 24.841461 | 17.631683 |  |  |

# Evaluation of Time synchronization protocol

- ✓ Measurement of t<sub>ps</sub>
- ✓ Measurement of  $t_{\Delta}$
- Implication on duty-cycling

```
□ Wakeup duration = (80+(2*0.183))ms = 80ms

Note of the case of 20.2 seconds sleep time,

dutycycle ≈ 0.4%

Node 2

t_{pc}+t_{\Delta}

Awake (Not to scale)

t_{w}: Time Sync t_{pc}: Time for command t_{w}: Awake error propagation duration
```

#### Outline

- ✓ Introduction
- ✓ Thesis Contributions
- ✓ Architecture Overview
- ✓ Past & Related Work
- ✓ Design and Implementation of Elements
- ✓ Experiments & Results
- Conclusion and Future Work

#### Conclusion and Future Work

- Protocol set generic
  - □Design
  - □Implementation
  - □ Experimental Evaluation
- Event Detection
  - □Implementation
  - □ Experimental Evaluation
- Sleep/Wakeup implementation

#### Conclusion and Future Work

#### Conclusion and Future Work

- Event Detection Speed of train
- Ambient vibrations
- Earth-quake vibrations

## Questions

Thank you!!