
A Framework for HighlyA Framework for Highly--Available Available 
SessionSession--Oriented Internet ServicesOriented Internet Services

Bhaskaran Raman, Prof. Randy H. KatzBhaskaran Raman, Prof. Randy H. Katz
{{bhaskarbhaskar, randy}@cs.berkeley.edu, randy}@cs.berkeley.edu

The ICEBERG Project
EECS, U.C.Berkeley



Resilient SessionResilient Session--OrientedOriented
Internet ServicesInternet Services

• For Internet services (e.g., web-servers, proxies), 
robustness & high-availability are very important

• Session-Oriented Services
– Client sessions live for long: many minutes to hours
– E.g., Audio/Video transcoding proxies, Internet Video-on-

demand, Game servers
– Important, growing class of Internet applications

• For such services, high-availability means:
– No session interruption at client in presence of failures

Internet

Web-server

Web-cache

Transcoding proxy

Clients
Internet 
Services



Motivation and Problem ScopeMotivation and Problem Scope

Motivation – Internet 
components subject to failure

– Should be hidden from end-
clients

– Services often critical to users
– Session re-instantiation on 

failure little studied so far

Goal – A framework for robust 
session-oriented services:

– Handle failures at all levels
• Process, machine, site-failure, 

network partition
– Quick recovery from failure

• Minimal service interruption 
for interactive sessions

Assumption: Stateless services

– Little or no state build-up at service during session
• All state at client(s) – problem of re-instantiating sessions is tractable

– Examples: transcoding proxies, video-on-demand servers
– We do not consider “stateful” services

• Statefulè Entirely different semantics for moving sessions



Our FrameworkOur Framework

Replicated Clusters

– In the wide-area
– Tolerance to 

site/network failures
– Clusters could belong 

to independent 
service providers

• Orthogonality good 
for fault-tolerance

Monitoring Mechanism

– Peer-clusters monitor 
each other

– Keep track of live-ness 
and performance 
behavior

• For backup/fail-over 
purposes

Optimal choice of 
server instance

– Not only for 
session setup but 
for the entire 
session duration

– Session-
transfer on 
detecting poor 
performance or 
failure

Client
Service Cluster



Support for SessionSupport for Session--transfertransfer

Service cluster

Cluster monitors performance of 
its clients – or gets performance 

reports from clients

Peers know about each others’ 
clients – info exchanged during 

session setup

Periodic heart-beats to keep 
track of liveness – timeouts to 

detect failure

On cluster/network-failure, or 
poor performance, session is taken 

over by peer cluster
Peer cluster

Client



Support for SessionSupport for Session--transfer (Contd.)transfer (Contd.)

Service cluster

Process/machine failures 
handled within cluster – by 

cluster-manager

Peer cluster

Peer-monitoring done by 
manager-nodes – overhead 

amortized across many clients

Manager node

Service node

Client

Replicated cluster-manager 
for redundancy

Aggregation of application 
performance information – based 
on client “location” – for choosing 

“best” peer-backup-cluster



Open Research QuestionsOpen Research Questions

• Location of replicated services
– How do clusters find each other?
– How do they agree to peer ?

• Who monitors who?
• Who can serve as backup?

– Which peer is the best backup for a particular client?
– What are the trust relationships between service providers?

• Issues with inter-cluster wide-area monitoring
– How to detect failures quickly in the wide-area Internet?
– With low overhead?
– Issue of false detection of failure due to latency variations
– Stability: when site fails,

• do not want to move all sessions to the same backup cluster
• this may cause load-collapse of entire system



• Cluster location and peering:
– Graph of peering clusters should correspond to “network-

closeness”. E.g.,

– Peering can be similar to that for Internet backbone routers
• To identify “best” backup peer cluster for a client

– Client clustering [Krishnamurthy & Wang, SIGCOMM’00]
– Distance estimation [IDMaps, INFOCOM’99, INFOCOM’00]

• Design of heartbeat mechanism & timeouts
– Studies of Internet delay behavior: [Allman & Paxson, SIGCOMM’99], 

[Acharya & Saltz, UMCP, ‘97]
• RTT spikes are temporal è possible to design tight and reliable

heartbeat mechanism in the wide-area?

Next Steps…Next Steps…

SF

LA Houston

DC

NYChicago



Related WorkRelated Work

(5)(4)(3)(2)(1)

YesNoNoYesNoSession-transfer 
capability

Within and 
across wide-
area clusters

Local-areaIn the 
wide-area

Within 
cluster

Within 
cluster

Scope of failure 
recovery

• Summary of related work:
1. Cluster-based approaches: TACC [A. Fox et.al. SOSP’97], LARD [V.S. Pai et.al. 

ASPLOS ’98]
2. Video transcoding proxy: Active Services [E. Amir et.al. SIGCOMM 1998]
3. Web-mirror selection methods: SPAND [S. Seshan et.al. INFOCOM 2000]
4. Fault-tolerant distributed computing (not Internet services)
5. Our Approach: Wide-area replicated clusters + Monitoring

Session-recovery in the wide-area not considered so far



SummarySummary

• Requirement for robust session-oriented services:
– Arose from use of transcoding services for device 

communication in hybrid networks [ICEBERG, U.C.Berkeley]
– Availability requirements especially stringent for 

communication services (e.g., the telephone system)
• Framework for high availability

– Wide-area monitoring mechanism betn. service cluster peers
• Approach promises low-overhead, low-delay fail-over

– Amortization of control overhead with use of clusters
– Common failure cases handled within cluster
– Backup cluster peers for quick recovery from site/network 

failures
• Next step: prototype implementation and evaluation…

– Study trade-off between (a) service re-instantiation time, 
(b) monitoring overhead, and (c) amount of pre-provisioning


