A Framework for Highly-Available Session-Oriented Internet Services

Bhaskaran Raman, Prof. Randy H. Katz {bhaskar, randy}@cs.berkeley.edu

Resilient Session-Oriented Internet Services

- For Internet services (e.g., web-servers, proxies), robustness & high-availability are very important
- Session-Oriented Services
 - Client sessions live for long: many minutes to hours
 - E.g., Audio/Video transcoding proxies, Internet Video-ondemand, Game servers
 - Important, growing class of Internet applications
- For such services, high-availability means:
 - No session interruption at client in presence of failures

Motivation and Problem Scope

Motivation – Internet components subject to failure

- Should be hidden from endclients
- Services often critical to users
- Session re-instantiation on failure little studied so far

Goal – A framework for robust session-oriented services:

- Handle failures at all levels
 - Process, machine, site-failure, network partition
- Quick recovery from failure
 - Minimal service interruption for interactive sessions

Assumption: Stateless services

- Little or no state build-up at service during session
 - All state at client(s) problem of re-instantiating sessions is tractable
- Examples: transcoding proxies, video-on-demand servers
- We do not consider "stateful" services
 - Stateful → Entirely different semantics for moving sessions

Our Framework

- Tolerance to site/network failures
- Clusters could belong to independent service providers
 - Orthogonality good for fault-tolerance

Monitoring Mechanism

- Peer-clusters monitor each other
- Keep track of live-ness and performance behavior
 - For backup/fail-over purposes

- Not only for session setup but for the entire session duration
- Sessiontransfer on detecting poor performance or failure

Support for Session-transfer

Support for Session-transfer (Contd.)

Open Research Questions

- Location of replicated services
 - How do clusters find each other?
 - How do they agree to peer?
 - Who monitors who?
 - Who can serve as backup?
 - Which peer is the best backup for a particular client?
 - What are the trust relationships between service providers?
- I ssues with inter-cluster wide-area monitoring
 - How to detect failures quickly in the wide-area Internet?
 - With low overhead?
 - Issue of false detection of failure due to latency variations
 - Stability: when site fails,
 - do not want to move all sessions to the same backup cluster
 - this may cause load-collapse of entire system

Next Steps...

- Cluster location and peering:

- Peering can be similar to that for Internet backbone routers
- To identify "best" backup peer cluster for a client
 - Client clustering [Krishnamurthy & Wang, SIGCOMM'00]
 - Distance estimation [IDMaps, INFOCOM'99, INFOCOM'00]
- Design of heartbeat mechanism & timeouts
 - Studies of Internet delay behavior: [Allman & Paxson, SIGCOMM'99], [Acharya & Saltz, UMCP, '97]
 - RTT spikes are temporal → possible to design tight and reliable heartbeat mechanism in the wide-area?

Related Work

- Summary of related work:
 - 1. Cluster-based approaches: TACC [A. Fox et.al. SOSP'97], LARD [V.S. Pai et.al. ASPLOS '98]
 - 2. Video transcoding proxy: Active Services [E. Amir et.al. SIGCOMM 1998]
 - 3. Web-mirror selection methods: SPAND [S. Seshan et.al. INFOCOM 2000]
 - 4. Fault-tolerant distributed computing (not Internet services)
 - 5. Our Approach: Wide-area replicated clusters + Monitoring

	(1)	(2)	(3)	(4)	(5)
Scope of failure recovery	Within cluster	Within cluster	In the wide-area	Local-area	Within and across wide- area clusters
Session-transfer capability	No	Yes	No	No	Yes

Session-recovery in the wide-area not considered so far

Summary

- Requirement for robust session-oriented services:
 - Arose from use of transcoding services for device communication in hybrid networks [I CEBERG, U.C.Berkeley]
 - Availability requirements especially stringent for communication services (e.g., the telephone system)
- Framework for high availability
 - Wide-area monitoring mechanism betn. service cluster peers
- Approach promises low-overhead, low-delay fail-over
 - Amortization of control overhead with use of clusters
 - Common failure cases handled within cluster
 - Backup cluster peers for quick recovery from site/network failures
- Next step: prototype implementation and evaluation...
 - Study trade-off between (a) service re-instantiation time,
 (b) monitoring overhead, and (c) amount of pre-provisioning