08/22/2003 12:17

i Overview

AIMD (Additive Increase Multiplicative

{ TCP Congestion Control Decrease)

Slow Start and Congestion Avoidance
Mukul Goyal Fast Retransmit/Fast Recovery
Selective Acknowledgement (SACK)
Forward Acknowledgement (FACK)
TCP Vegas

Additive Increase Multiplicative
Decrease (AIMD): Fair Distribution of
Network Resources i TCP Variables

The congestion window (cwnd) is a sender-side limit on the amount
of data the sender can transmit into the network before receiving
an acknowledgment (ACK)

The receiver's advertised window (rwnd) is a receiver-side limit on
the amount of ding data. The mini of cwnd and rwnd
governs data transmission.

The slow start threshold hresh), is used to d ine whether
the slow start or congestion avoidance algorithm is used to
control data transmission. The slow start algorithm is used when
cwnd < ssthresh, while the i i e algorithm is
used when cwnd > ssthresh.

SMSS: Sender’s Maximum Segment Size

Connection A

Connection B

Time

08/22/2003 12:17

i Slow Start

Beginning transmission into a network with
unknown conditions requires TCP to slowly
probe the network to determine the available
capacity, in order to avoid congesting the
network with an inappropriately large burst of
data.

Initial cwnd = 1 or 2 segments.

The initial value of ssthresh MAY be arbitrarily
high.

Slow Start and Congestion

i Avoidance

DuriRAgSslow start, a TCP increments cwnd by at most

SMSS bytes for each ACK received that
acknowledges new data. Slow start ends when cwnd
exceeds ssthresh or when congestion is observed.

During congestion avoidance, cwnd is incremented by 1
full-sized segment per round-trip time (RTT).
Congestion avoidance continues until congestion is
detected.

Slow start actually leads to exponential increase in
cwnd. Cwnd doubles every RTT.

The slow start algorithm is used at the beginning of a
transfer, or after repairing loss detected by the
retransmission timer.

Setting ssthresh and cwnd on
Detecting Packet Loss Via
Retransmission Timeout

When a TCP sender detects segment loss
using the retransmission timer, the
value of ssthresh MUST be set as
follows: ssthresh = max (FlightSize / 2,
2*SMSS)

FlightSize is the amount of outstanding
data in the network.

Cwnd is set to 1 full-size segment.

Congestion Control Via
i Retransmission Timeout

cwnd

Congestion

Congestion Avoidance

avoidance

Slow Start Slow Start

Retransmission
timeout

08/22/2003 12:17

Fast Retransmit

A TCP receiver SHOULD send an immediate
duplicate ACK when an out- of-order segment
arrives.

The "fast retransmit" algorithm to detect and repair
loss: Interpret the arrival of 3 duplicate ACKs (4
identical ACKs without the arrival of any other
intervening packets? as an indication that a
segment has been lost.

After receiving 3 duplicate ACKs, TCP performs a
retransmission of what appears to be the missing
segment, without waiting for the retransmission
timer to expire.

Fast Recovery

After the fast retransmit algorithm sends what
appears to be the missing segment, the "fast
recovery” algorithm governs the transmission
of new data until a non-duplicate ACK arrives.

The receipt of the duplicate ACKs not only
indicates that a segment has been lost, but
also that segments are most likely leaving the
network. Hence the TCP sender can continue
to transmit new segments.

Fast Retransmit/Fast
Recovery

When the third duplicate ACK is received, set ssthresh
to half the flight size.
Retransmit the lost segment and set cwnd to ssthresh
plus 3*SMSS.
This artificially "inflates” the congestion window by the number
of segments (three) that have left the network
For each additional duplicate ACK received, increment
cwnd by SMSS.
This artificially inflates the congestion window in order to reflect
the additional segment that has left the network.
Transmit a segment, if allowed by the new value of
cwnd and the receiver's advertised window.

Fast Retransmit/Fast
Recovery

When the next ACK arrives that acknowledges
new data, set cwnd to ssthresh (the value set
in step 1).

iThis is termed "deflating” the window.

This ACK should be the acknowledgment elicited by
the retransmission from step 1, one RTT after the
retransmission.

This ACK should acknowledge all the intermediate
segments sent between the lost segment and the
receipt of the third duplicate ACK, if none of these
were lost.

Go back to Congestion Avoidance phase

08/22/2003 12:17

Congestion Control Via Fast The Problem with Fast
i Retransmit/Fast Recovery i Retransmit/Recovery

Fast retransmit/fast recovery is known to
generally not recover very efficiently
from multiple losses in a single flight of

cwn packets.

Congestion Loss of 3 or more packets in a window
Congestion Avoidance

avoidance typically results in retransmission
timeout.

Slow Start

—
Fast recovery

T'TIT INTVVINCTTIV IvivurimcauvliTt w

TCP's Fast Recovery

Algorithm i The NewReno Algorithm
In the case of multiple packets dropped from a single window of When the third duplicate ACK is received and
data, the first new information available to the sender comes the sender is not already in the Fast

when the sender receives an acknowledgement for the

retransmitted packet (that is the packet retransmitted when Recovery procedure, set ssthresh to half the

Fast Retransmit was first entered). flight size)
If there had been a single packet drop, then the Record the highest sequence number
acknowledgement for this packet will acknowledge all of the transmitted in the variable "recover".

packets transmitted before Fast Retransmit was entered (in

the absence of reordering). However, when there were Retransmit the lost segment and set cwnd to

multiple packet drops, then the acknowledgement for the ssthresh plus 3*MSS.
retransmitted packet will acknowledge some but not all of the For each additional duplicate ACK received,
packets transmitted before the Fast Retransmit. We call this increment cwnd by MSS.

packet a partial acknowledgment.

08/22/2003 12:17

i The NewReno Algorithm

Transmit a segment, if allowed by the new value of
cwnd and the receiver's advertised window.

When an ACK arrives that acknowledges new data:

If this ACK acknowledges all of the data up to and including
"recover”, Set cwnd to ssthreshand exit the Fast
Recovery procedure.

If this ACK does *not* acknowledge all of the data up to and
including "recover", then this is a partial ACK. In this
case, retransmit the first unacknowledged segment. Do
not exit the Fast Recovery procedure (i.e., if any
duplicate ACKs subsequently arrive, increment cwnd by
MSS).

TCP Selective
i Acknowledgment (SACK)

NewReno is not the complete solution to the poor performance
when multiple packets are lost from one window of data.

With the limited information available from cumulative
acknowledgments, a TCP sender can only leam about a
single lost packet per round trip time.

New Reno recovers from N losses in N round-trip times.

A Selective Acknowledgment (SACK) mechanism, combined
with a selective repeat retransmission policy, can help to
overcome these limitations.

The receiving TCP sends back SACK packets to the sender
informing the sender of data that has been received. The
sender can then retransmit only the missing data segments.

TCP Selective
Acknowledgment (SACK)

The SACK option is to be sent by a data receiver to
inform the data sender of non-contiguous blocks of
data that have been received and queued.

Each contiguous block of data queued at the data
receiver is defined in the SACK option by:

LEEIEdI?e of Block: This is the first sequence number of this
l0CK.

Right Edge of Block: This is the sequence number immediately
following the last sequence number of this block.

How Many Blocks can be
reported in a SACK Option

A SACK option that specifies n blocks will have
a length of 8*n+2 bytes, so the 40 bytes
available for TCP options can specify a
maximum of 4 blocks.

It is expected that SACK will often be used in
conjunction with the Timestamp option, which
takes an additional 10 bytes (plus two bytes
of padding); thus a maximum of 3 SACK
blocks will be allowed in this case.

08/22/2003 12:17

Sender Response to a SACK
Option

When an acknowledgment segment arrives containing
a SACK option, the data sender will turn on the
SACKed bits for segments that have been selectively
acknowledged.

After the SACKed bit is turned on (as the result of
processing a received SACK option), the data sender
will skip that segment during any later
retransmission.

Any segment that has the SACKed bit turned off and is
less than the highest SACKed segment is available
for retransmission.

| I an \)) N UDIIIB [) p\ W) AN
Information for Congestion
Control

TCP SACK option allows the receiver to specify
additional information which the sender may
use to better handle recovery from lost data.

SACK information can be used to accurately
retransmit lost segments.

SACK information can also be used to refine
TCP congestion control during recovery.

I AAC TN\, UDIIIB [) a\ W) \ N
Information for Congestion
Control

Use data in SACK blocks to precisely
compute the amount of data
outstanding in the network (awnd).

Data is assumed to have left the network
when either

it has been ACKed or SACKed, or
some segment following it has been SACKed

FACK Contd.

Forward-most SACKed data is stored in a
new variable, snd.fack. During non-
recovery states,
snd.fack = snd.una

if there have been no retransmissions, the
amount of data in the network at any
time is given by:
awnd = snd.nxt - snd.fack

08/22/2003 12:17

FACK Contd.: Accounting for
Retransmissions

The state variable retran_data is
increased when data is retransmitted
tetran_data is decreased when
¢ Data is SACKed
In general, then:
awnd = snd.nxt - snd.fack + retran_data
While awnd < cwnd
SendSomeThing()

TCP Vegas

TCP Reno: Reactive Congestion Control

TCP Reno uses the loss of segments as a
signal that there is congestion in the network.
It has no mechanism to detect the incipient
congestion - before losses occur - so that
losses can be prevented.

Proactive Congestion Control:

Increase in round trip delay is a symbol of incipient
congestion.

TCP Vegas

TCP Vegas detects incipient congestion by
comparing the measured throughput rate with
expected throughput rate.

The Vegas idea: The number of bytes in transit
is directly proportional to the expected
throughput, and therefore as the window size
increases - causing the bytes in transit to
increase - the throughput of the connection
should also increase.

i TCP Vegas

Measure and control the amount of extra data
this connection has in transit.

The extra data - the data that would not have been
sent if the bandwidth used by the connection
exactly matched the available bandwidth in the
network.

if the connection is sending too much extra
data, it is causing congestion.

If it sends too little extra data, it may not take
advantage of the extra bandwidth that
recently became available in the network.

08/22/2003 12:17

i TCP Vegas i TCP Vegas

BaseRTT: The RTT value when there is
no congestion. Usually taken to be the
minimum of all observed RTTs.

Expected throughput = congestion
window size/BaseRTT.

Actual throughput = actual number of
bytes sent during the round trip time of a
particular packet/the round trip time

Let diff = expected throughput - actual throughput

Diff has to be greater than 0 since expected = cwnd/min(rtt) and
actual = cwnd/(a sample of rit).

Let A and B be two thresholds such that A < B
¥ diff < A, increment cwnd by a segment

If diff > B, decrement cwnd by a segment

If A < diff < B, don’t change the cwnd

A and B set according to the number of extra packets
acceptable in the network. E.g. A =2
packets/min(RTT), B = 4 packets/min(RTT)

TCP Vegas During Slow Start

If the ssthresh is set too high, TCP Reno is
bound to lose half the cwnd worth of packets
sooner or later.

Since the cwnd is doubled every rit.

That many loses will lead to expensive
retransmission timeout.

Vegas Solution: Double the cwnd every other
RTT. In the meanwhile, apply the vegas
congestion avoidance. Get out of slow start
when EXJ)ected - Actual > C (another
threshold).

