08/22/2003 12:19

{ Active Queue Management

Mukul Goyal

Random Early Drop (RED)
i [floyd93]: Goals

Main Goal: Provide congestion avoidance by
controlling the average queue size.

Keep the average queue size low while allowing
occasional bursts of packets in the queue.

Additional goals:
Avoid global synchronization
Avoid bias against bursty traffic

Should be able to maintain an upper bound on the
average queue size even in the absence of
cooperation from transport-layer protocols.

Estimating Congestion: Average
Queue Size Versus Instantaneous
Queue Size

TCPtraffic is bursty => instantaneous queue size
varies significantly => high instantaneous queue
size may not indicate congestion in the network.

Average queue size is calculated as exponentially
weighted moving average of instantaneous queue
size.

Avg = (1-a)*avg + a* inst

Average Queue Length = lowPassFilter(instant. glen)

RED Argument: Average queue size is a better
indicator of congestion than instantaneous gueue
size. Ignore high frequency noise (i.e. rapidly
varying instant. Queue length)

RED Contd: Global Synchronization
and Bias Against Bursty Sources

With DropTail gateways each congestion period
introduces global synchronization in the network.
When the queue overflows, packets are often dropped from

several connections, and these connections decrease

their windows at the same time. This results in a loss of
throughput at the gateway.

DropTail gateways are likely to be biased against
bursty sources.
A burst of packets from a source likely to cause buffer

overflow leading to the drop of several packets which will
significantly slow down the bursty source.

08/22/2003 12:19

RED Contd: Congestion
i Avoidance Goals

Detect the incipient congestion.

Maintain the network in a region of low delay
and high throughput.

The average queue size should be kept low,
while fluctuations in the actual queue size
should be allowed to accommodate bursty
traffic and transient congestion.

i The RED Algorithm

The RED gateway calculates the average queue size, using a low-
pass filter with an ial weighted moving g

The average queue size is compared to two thresholds, a minimum
threshold and a maximum threshold.

When the average queue size is less than the minimum threshold,
no packets are marked.

When the average queue size is greater than the maximum
threshold, every arriving packet is marked.

When the average queue size is between the minimum and the
maximum threshold, each arriving packet is marked with
probability pa, where pa is a function of the average queue size
avg.

[Each time that a packet is marked, the probability that a packet is
marked from a particular connection is roughly proportional to
that connection’s share of the bandwidth at the gateway.

The RED Algorithm: Basic
Description

for each packet arrival:
calculate the average queue size avg
if minth avg < maxth

calculate probability pa

with probability pa:

mark the arriving packet

else if maxth avg

mark the arriving packet

The RED Operation

The RED gateway has two separate algorithms.

The algorithm for computing the average queue size
determines the degree of burstiness that will be
allowed in the gateway queue.

The algorithm for calculating the packet-marking
probability determines how frequently the gateway
marks packets, given the current level of
congestion.

08/22/2003 12:19

variables

Saved Variables:
favg: average queue size
g_time: start of the queue idle time
count: packets since last marked packet
Fixed parameters:
w, queue weight
{minth: minimum threshold for queue
maxth: maximum threshold for queue
max,; maximum value for p,,
Other:
p,: current packet-marking probability
@ current queue size
time: current time
f(1): a linear function of the time ¢

Detailed RED Operation: The

Detailed RED Operation

Initialization:
avg=0
count = -1

For each packet arrival:
calculate the new average queue size avg:
if the queue is nonempty
avg =(1-w)avg+w,q

else
m = f(time-q_time)
avg =(1-w)"avg

Detailed RED Operation

if minth [avg < maxth
increment count
calculate probability pa:
Py= max‘,(a vg-minth)/(maxth-minth)
p. = pAl-count xp,)
with probability p,:
mark the arriving packet
count=0
else if maxthl avg
mark the arriving packet
count=0
else count = -1

Flow RED (FRED) [lin97]

RED imposes the same loss rate on all the
flows regardless of their bandwidth.

Congestion Sensitive (TCP) flows will backoff but
insensitive (UDP) flows will continue to send data
at the same rate as before.

RED is unfair to congestion sensitive flows.

Flow RED: Use per-active-flow accounting to
impose on each flow a loss rate that depends
on the flow’s buffer use.

08/22/2003 12:19

FRED Operation

FRED maintains the following variables:

min, and max, The goals for minimum and
maximum number of packets each flow should be
allowed to buffer.

Avgcq: an estimate for average per-flow buffer
count. flows with fewer than avgcq packets
queued are favored over flows with more.

glen;: a count of buffered packets for each flow i that
currently has any packets buffered.

strike: the number of times the flow i has failed to
respond to congestion notification; FRED
penalizes flows with high strike values.

FRED Operation: For each
arriving packet P from flow i

identify and manage non-adaptive flows:
if (qlen, >= max, ||
(avg >= maxth && glen, > 2*avgcq) ||
(glen, >= avgcq && strike, > 1)) {
strike;++;
drop the packet;
}

FRED: For each arriving

i packet P from flow i (contd.)

operate in random drop mode:
if (minth <= avg < maxth) {
Randomly drop the packet only if (glen, >=
MAX(ming , avgcq))

Balanced RED [farooq99]

Another approach to provide fair distribution of
bandwidth between congestion sensitive and
insensitive flows.

Maintain 2 variables for each flow having a
packet in the buffer:

glen;: the number of packets of flow i in the buffer
gap; the number of packets accepted from flow i
since last dropping a packet from the flow.

08/22/2003 12:19

i BRED

Parameters:

I,: minimum number of packets that a flow can have
in the buffer before its packets start getting
dropped with probability p1.

I,: the number of packets that a flow can have in the
buffer before the packets get dropped
aggressively with probability p2 which is greater
than p1.

w,,; maximum number of packets that the flow is
allowed to have in the buffer.

BRED

For each arriving packet from flow i:

If glen, > w,, or the buffer is full, drop the
packet.

ifw, > glen, > |, && gap, > |,, drop the packet
with probability p2.

If I, > glen, > I, && gap, > |,, drop the packet
with probability p1.

If glen, <=1,, accept packet.

A Self-Configuring RED
Gateway [Wu99]

Consider a bottleneck link with capacity
Mbps.

100 TCP connections sharing the link => Per-
connection bw = 100kbps => a congestion signal
to one connection leads to a new load of
9.95Mbps.

2 TCP connections sharing the link => Per-
connection bw = 5Mbps => a congestion signal to
one connection leads to a new load of 7.5Mbps.

The max, parameter in RED should be adjusted

based on the number of connections.

A Self-configuring RED

i Gateway

Too aggressive packet drops will lead to empty
queues and under-utilization.

Too lenient packet drops will lead to buffer
overflows => RED reduces to droptail.

Per-flow accounting is expensive.

Several schemes estimate the number of active
flows with mixed results [sred99].

How to set max, so that it is neither too
aggressive not too lenient?

08/22/2003 12:19

A Self Configuring RED
Gateway

If the average queue size hovers around
minth, assume maxp to be too
aggressive.

If the average queue size hovers around

maxth, assume maxp to be too lenient.

A Self Configuring RED
Gateway

Every time average queue avg is updated:
if (minth < avg < maxth)
status = Between;
if (avg < minth && status != Below)
status = Below;
max, = max, / a;
if (avg > maxth && status != Above)
status = Above;
max, = max, * b;

Adaptive RED [floyd2001]

Almost same as the self configuring RED
except that additive increase multiplicative
decrease is used to adjust max; rather than
multiplicative increase multiplicative
decrease.

ARED Variables:

Interval: 0.5 seconds

Target: target value for average queue [minth +
0.4*(maxth-minth), minth + 0.6*(maxth-minth)]

a: min(0.01, max,/4)

b: 0.9

i Adaptive RED Operation

Every interval seconds:
If (avg > target and max, [0.5)
increase max,: max; += a;
Elseif (avg < target and max, >= 0.01)
decrease max,: max, *= b;

08/22/2003 12:19

Control Theoretical Approaches to
Buffer Management: The Pl
Controller [hollot01]

Apply control theory to develop a model for TCP
and AQM dynamics [misra00]

Simplify the TCP/AQM model to a linear system
and design a Proportional Integrator controller
that regulates the queue length to a target
value q,..

The PI controller uses the instantaneous
samples of the queue length taken at a
constant sampling frequency as its input.

The PI Controller Contd.

The packet drop probability is:
p(kT) = a(q(kT)-q.)) -b(a((k-1)T)-q,,) + p((k-1)T)
The drop probability increases (decreases)
when the queue length is higher (lower) than the target
value.
If the queue has grown (reduced) since the last sample.
The sampling frequency and the other coefficients
depend on link capacity, highest RTT and expected
number of active flows using the link.
The controller is designed so as to be robust even
when the actual (highest RTT, active flows) are
different from expected values.

Control Theoretical Approaches to Buffer
Management: Random Exponential
Marking (REM) [athuraQ1]

REM periodically updates a congestion “price”
that reflects any mismatch between
packet arrival and departure rates at the links
Actual queue length and target value
Congestion price p is given by:
p(®) = max(0, p(t-1) + [(1 (q(1)-q,e) + X(1))
Where c is link capacity, q(t) is instantaneous
queue length at time t and x(t) is packet
arrival rate at time t.

REM Contd.

The packet drop probability is defined as:

prob(t) =1 - 1*®wherell > 1is a constant

In overload situations, the congestion price
increases due to rate and queue mismatch
leading to higher packet drop probability.

When congestion abates, the price goes down
because mismatches are negative leading to
low packet drop probability.

08/22/2003 12:19

i References

floyd93] S Floyd, V Jacobson, “Random Early
Detection Gateways for Congestion Avoidance,”
|IEEE/ACM Transactions on Networking, 1(4), Aug
1993.

flin97] D Lin, R Morris, “Dynamics of Random Early
Detection,” SIGCOMM 1997.

ffarooq99] F Anjum, L Tassiulas,’Fair Bandwidth
Sharing between Adaptive and Non-adaptive Flows in
the Internet,” INFOCOM 1999.

fwu99] W Feng, D Kandlur, D Saha, K. Shin,”A Self-
Configuring RED Gateway,” INFOCOM 1999.

i References

ﬁsred99] T. On, gglgakshman, L Wong,"SRED: Stabilized RED,”

ﬁﬂodeOOl] S Floyd, R. Gummadi, S Shenker, “Adapnve RED An
Algorithm to |ncrease the robustness of RED's Acti e Quel
lz\lldaonagement http:/www.icir. crg/ﬂoyd/papers/adapnveRed pdf

fhollot01] C. Hollot, V. Mishra, W. Gong, D. Towsley, “On Designing
Improved Controllers for AQM Routers Supporting TCP Flows,”
INFOCOM 2001.

ﬁmlshraOO]V Mishra, W. Gong, D. Towsley, “Fluid-based Analysis

f a Network of AQM Routers Supj) rting TCP Flows With an

Appllcatlon To RED,” SIGCOMM 2000

!athuraOl]SAthurall a, V. Li, S. Low, Q Yin, “REM: Active Queue
Management,” |El ENelwork Vol 15, No3 May 2001

