Lecture 11

CS625: Advanced Computer Networks
Fall 2004
Friday, 22 August 2003
Bhaskaran Raman
CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2004/outline.html

Outline for Today

- TCP Round-Trip Estimation
- Fast Retransmit, Fast Recovery
- Scribe for today?

RTT Estimation

- RTT = Time between pkt. send and when its Ack is recd.
- EWMA: Exponentially Weighted Moving Average
- SRTT: Smoothed RTT
- SRTT = alpha*SRTT + (1-alpha)*RTT_i
 - What should be the value of alpha?
 - alpha is chosen to be 7/8

Retransmission Timeout

- Initially, RTO = beta X SRTT
 - What should be the value of beta?
- RTO (Retransmission Timeout) = SRTT + 4*RTT_var
- RTO back-off
RTT Sampling Ambiguity

- During retransmit, which RTT to consider?
- Choices are:
 - First transmission
 - Last transmission
 - Ignore RTT sample
- Karn's algorithm: ignore RTT sample, but maintain backed-off RTO until valid RTT sample
- Can use timestamps to resolve ambiguity
 - But, involves overhead; can't compress header

Fast Retransmit/Fast Recovery

- TCP detects packet-loss by looking for packet reordering
 - Three out-of-order packets ==> Three DUP-ACKs ==> Conclude packet loss
- \(ssthresh = \frac{CWND}{2} \)
- \(CWND = ssthresh + 3 \)
- \(CWND++ \) for each DUP-ACK received
- On receiving first “fresh” ack, \(CWND = ssthresh \)

Fast Retr./Fast Rec. (Details)

- Congestion avoidance:
 - Seq no: U is dropped, CWND=W
 - \([U, U+W)\) are in transit
 - Window pulled back to \(W/2 \)
 - In one RTT, \(W-1 \) DUP-ACKs arrive
 - Packets \([U, U+W/2+W-1)\) are sent
 - \(W/2-1 \) new packets are sent
- No “burst” of packets:
 - New ACK arrives asking for \(U+W \)
- Bottleneck clears:
 - Sender does nothing for the first \(W/2 \) DUP-ACKs

Topics next week

- QoS: IntServ
 - Assigned reading
- QoS: DiffServ