Lecture 12

CS625: Advanced Computer Networks Fall 2004

Tuesday, 26 August 2003

Bhaskaran Raman CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2004/outline.html

Queuing Clarifications

- Recall router queuing mechanisms:
 - First-Come-First-Served
 - Fair Queuing (FQ)
- FQ requires O(logN) time per packet
- Stochastic FQ (SFQ): use small number of queues, and hash flows onto queues
- Deficit-Round-Robin (DRR): carry over deficit to next round; O(1) scheduling
- Core-Stateless-Fair-Queuing (CSFQ): edgerouters insert label; no per-flow state in corerouters

Outline for Today

- Queuing: clarifications
- Integrated Services
- Announcements:
 - RED: what you need to know
 - Project web-page up please check
 - I will give project feedback by this weekend
 - Short project status report due in 2 weeks (Friday, 5 Sep 2003)
- Scribe for today?

Integrated Services [CSZ92]

- Data and Voice service in same network
- Architecture:
 - Service commitments
 - Scheduling algorithm at router
 - Service interface
 - Admission control
 - Signaling protocol

Classification of Applications

- Best-effort
- Real-time, with play-back point
- Properties:
 - Low delay desired
 - Absolute or statistical bound
 - Delay within play-back point is acceptable
 - Some packet loss can be tolerated
- Video can be bursty take advantage of statistical multiplexing

Service Commitments

- Guaranteed
- Predicted service
 - Network has predictable behaviour: past is guide to future
 - Network tries to minimize delay
- Best-effort

Further Classification

- Rigid play-back versus Adaptive
- Intolerant to delay over play-back point versus tolerant
- Two classes:
 - Rigid and intolerant
 - Adaptive and tolerant

Traffic characterization: Token Bucket

- Token rate r, bucket size b
 - One token required for each bit transmission
 - Rate *r* represents the average flow rate
 - Bucket size *b* represents the max. token *credit*
- Define:
 - n(0) = b,
 - $n(i) = min[b, n(i-1) p(i) + r x \{t(i) t(i-1)\}]$
 - n(i) >= 0 implies flow conforms to (r, b)
- Parameter *b* represents "burstiness"
 - Can specify b(r) for any r, for a given flow

Scheduling for Guaranteed Service

- Weighted Fair Queuing (WFQ)
- Parekh and Gallager:
 - If, flow gets same clock-rate at all routers, and
 - If sum of rates of all flows at a router < capacity
 - Then, delay in network is bounded by b(r)/r for each flow
- Guaranteed service: delay does not depend on behaviour of other flows

More on Scheduling

- Can implement priority classes
- Multi-hop ==> FIFO+
 - Keep track of excess delay at each router
- Unified scheduling:
 - One WFQ queue for each each guaranteed service flow
 - One for all predicted service flows, and best-
 - Multiple classes based on delay bounds

Scheduling for Predicted Service

- Experiment: consider a single source bursty at some instant
 - WFQ: only that flow will see all excess delay
 - Some packets may miss their deadline
 - Earliest Deadline First (EDF) is more appropriate
- If (1) all flows have similar service desire, and (2) all packets have same deadline offset from arrival time, then EDF == FIFO
- FIFO good for sharing, WFQ for isolation

Also need...

- Admission control
- Signaling protocol
- Further in the week:
 - RSVP: Resource reSerVation Protocol
 - QoS: DiffServ a simpler approach to multiple kinds of services