Lecture 15

CS625: Advanced Computer Networks Fall 2004

Friday, 05 September 2003

Bhaskaran Raman CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2004/outline.html

TCP Functionalities

- In-order, reliable delivery
- Congestion control
- Uses packet loss as an indication of congestion in the network
- Assumption can be badly broken in wireless networks

Topic for Today

- TCP over wireless
 - Snoop: dealing with wireless losses
 - Asymmetric links
- Scribe for today?

Design Alternatives

- Where to implement a solution?
 - Sender
 - Receiver
 - In the network: wired or wireless

Design Alternatives (continued) Wired network Last-hop wireless Mobile client *Wireless-aware* TCP • Split-TCP - Base-station acts as a TCP proxy

Details of snoop: snoop_data()

• Receiving packets (N-2), (N-1), N...

- Breaks end-to-end semantics

- CPU/Memory overheads

- In sequence (expected, or higher seq.no.)
 - Cache and send
- Out of sequence (seen already)
 - Ack not seen ==> forward
 - Ack seen ==> regenerate latest ACK
- Out of sequence (not seen earlier)
 - Record as a retransmit, cache, and forward

Design Alternatives (continued)

- Reliable link layer
 - Have to be careful about link-layer timeout
- Snoop: network layer solution at base-station
 - Base-station caches packets as it forwards them
 - Detects packet loss, using DUP-ACKs
 - Does local retransmission
 - Suppresses DUP-ACKs from reaching server
 - snoop_data() and snoop_ack()

Details of snoop: snoop_ack()

- Receiving ACKs for (N-2), (N-1), N...
- New ACK ==> clear buffers, advance
- Spurious ACK ==> discard
- DUP-ACK
 - Packet not in cache ==>Forward on
 - Packet marked as retransmitted ==> Forward on
 - Packet in cache, first such DUP-ACK
 - Retransmit packet, suppress DUP-ACK, calculate expected number of further DUP-ACKs
 - Packet in cache, further DUP-ACKs
 - Suppress

Snoop: Some Remarks

- Will not work when IPSec is in place
- Link-layer solution achievable in many cases
- What method of evaluation?
 - Simulation
 - Implementation
 - Emulation

Asymmetric Network: Solutions

- ACK Congestion Control:
 - If TCP receiver can learn of ACK loss, then it can send ACKs at a slower rate
 - Control delayed ACK parameter
- ACK filtering:
 - Congested router filters out "earlier" ACKs in its buffer
 - Does not require per-flow state in router

Asymmetric Network: Issues

- Asymmetry in bandwidth
 - TCP ACK clocking mechanism breaks down
- ACK congestion
 - ACKs get spaced out
 - Normalized bandwidth ratio k
 - Only one ACK for k data packets can be sent
- ACK loss
 - Will slow down sender
 - Or cause sender burstiness
 - Will affect fast retransmit mechanism

Asymmetric Network: Solutions (continued)

- Sender adaptation:
 - Send according to number of segments acknowledged, not based on number of ACKs
 - Calc. sending rate, and don't send too many back-to-back packets
 - Receiver marks DUP-ACKs with a bit, beyond threshold number of out-of-order packets
- Router can schedule ACKs with priority
 - Again, no per-flow state required

Upcoming Lectures, and Reminders

- Next week:
 - Mobile-IP, Multicast
- Reminders:
 - Status report due today
 - First assignment will be out today
 - Check web-page
 - Due in two weeks