Lecture 19

CS625: Advanced Computer Networks Fall 2004

Wednesday, 17 September 2003

Bhaskaran Raman CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2004/outline.html

Multicast Routing Issues

- Protocols considered so far:
 - Distance Vector Multicast Routing Protocol (DVMRP)
 - Link-State based Protocol
- Issues:
 - Per (group X source) information in routers
 - Dependent on underlying unicast routing protocol

Topic for Today

- Scalable Multicast
 - Core-Based Trees (CBT) [BFC93]
- Scribe for today?

Algorithm Specific Issues

- DVMRP:
 - Routers charged for *not* being in multicast tree
 - Should determine child and leaf links
 - Each time next-hop to source changes
 - Each time distance to source changes for a router on a link
- Link-State:
 - All routers learn about all groups!
 - Flooding after any group membership change
 - Re-computation after any topology change or group membership change

Core-Based Trees (CBT) [BFC93]

- Key idea:
 - Have a single tree for all sources
 - One tree per group
 - Tree is rooted at *core* node
 - Simplicity and scalability will compensate for additional data latency (hopefully)
- Advantages:
 - Scalability: only O(num. groups) state at routers
 - Routers exchange control messages using any underlying unicast protocol
 - Tree creation is receiver-based (only relevant routers involved)

Data Forwarding

- Assume that core has been identified and tree has been created
- Source sends with core-id as destination
 - Group id is given in IP option
 - Data packet travels towards core
 - On arriving at an on-tree router, change destination address to group-id
- Important advantage: can have CBT unaware routers in-between

CBT Protocol Details

- Core and group identification:
 - Each core router has an id (its unicast address)
 - Group-id's are per core-id
- Issues to be resolved:
 - How is core router identified?
 - How is the tree formed?
 - How is data forwarding done?

Tree Formation

- Receiver sends JOIN-REQ towards core
 - Forward using unicast
 - Until we hit an already on-tree router
 - On-tree router sends JOIN-ACK
 - This effectively extends the tree
- Similarly, QUIT-REQ to leave a group
- On path failure, rejoin the tree

Choice of the Core

- Can choose at or near source, if there is only one source
- Otherwise, choice is unclear
- In any case, we need multiple core nodes
 - For fault-tolerance
 - Two choices:
 - Determine backup dynamically
 - Or, have a routing protocol constantly running between the set of core routers