Lecture 22

CS625: Advanced Computer Networks
Fall 2003

Wednesday, 08 October 2003

Bhaskaran Raman
CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2003/outline.html

Topic for Today

- Scalable Reliable Multicast (SRM) [FJM95]
- Scribe for today?
- Further topics for semester?

Reliable Multicast

- Example applications:
 - Software distribution
 - PPT slides in a videoconference
 - Distributed white-board (wb)
- For unicast, TCP provides reliability
- “One size does NOT fit all” in multicast:
 - Applications may or may not require ordering
 - One or more senders possible
 - Multiple senders possible for same data

Design Goals

- Give flexibility to application
 - Ordering, where data comes from, etc.
- Assume only datagram delivery from IP
- Adaptive parameters to algorithms
Design Challenges

- Unicast has “fate-sharing”
 - Sender or receiver can be responsible for reliability
 - TCP uses sender-based approach
- Sender-based approach has problems in multicast:
 - ACK implosion
 - Sender has to track set of receivers
 - Per-receiver state at sender
 - RTT? CWND? These are undefined
- Hence, receiver-based approach

Design Challenges (continued)

- Sequencing:
 - Per source or independent of source?
 - Sequence number wrap-around can happen
 - Problems with receiver joining late
 - Or intermediate partitions
- Solution: Application Layer Framing (ALF)
 - Unit of data defined by application
 - Example: “block-5 of file slides.ps”
 - FTP/TCP can also use this
 - In multicast, sequence number can now be per-source or independent of source
 - And, anyone who has the data can retransmit

The Reliable Multicast Protocol

- Each receiver keeps track of sequence numbers received
- Periodic session messages sent by each sender
 - With highest sequence number sent so far
 - And timestamp (for RTT estimation)
- On loss detection,
 - Multicast request message after random delay
 - Multicast response message after random delay

Random Timer Values

- Repair timer
 - Uniform in \([C1, C1+C2] \times d(S,A)\)
- Response timer
 - Uniform in \([D1, D1+D2] \times d(B,A)\)
- \(C1\) high:
 - Larger repair delay
 - But, more suppression for farther nodes
- \(C2\) high:
 - Larger response delay
 - But, more suppression for larger group sizes
Extensions

- Adaptive values of C1, C2, D1, D2
- Adapt based on
 - Observed delay in recovery
 - Observed duplicate requests
- Local recovery
 - Scoped repair/response messages
- Application specific adaptations
 - Different tolerance to delay and number of duplicates
- Congestion control?

Further topics...

- Overlay networks, and overlay multicast
- Reminder:
 - Assignment-2 assigned this Friday