Lecture 25

CS625: Advanced Computer Networks Fall 2003

Wednesday, 15 October 2003

Bhaskaran Raman CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2003/outline.html

Topic for Today

- Basics in Cryptography and Security
- Scribe for today?

Cryptography Fundamentals

- Privacy versus Authentication:
 - Privacy: preventing third party from snooping
 - Authentication: preventing impostering
- Two kinds of authentication:
 - Guarantee that no third party has modified data
 - Receiver can prove that only the sender originated the data
 - Digital Signature
 - E.g., for electronic transactions

Cryptographic Privacy and Authentication

- Encrypt before sending, decrypt on receiving
 - Terms: plain text and cipher text
- Two components: key, and the algorithm
 - Should algorithm be secret?
 - Yes, for military systems
 - No, for commercial systems
- Key distribution must be secure
- Can also be used for authentication

Cryptanalysis

- Cryptanalysis: attacker tries to break the system
 - E.g., by guessing the plain text for a given cipher text
 - Or, by guessing the cipher text for some plain text
- Possible attacks:
 - Cipher-text only attack
 - Known plain-text attack
 - Chosen plain-text attack
 - Chosen text attack

Public-Key Systems

- Shared-key ==> difficulties in key distribution
 - $-C(n,2) = O(n^2)$ keys
- Public key system
 - Public component and a private component
 - Two kinds:
 - Public key distribution: establish shared key first
 - Public key cryptography: use public/private keys in encryption/decryption
 - Public key cryptography can also be used for digital signatures

Security Guarantees

- Two possibilities:
 - Unconditional
 - Computational security
- Unconditional security: an example
 - One-time tape
- Most systems have computational security
 - How much security to have?
 - Depends on cost-benefit analysis for attacker

Some Example Systems

- Permuted alphabet (common puzzle)
 - Can be attacked using frequency analysis, patterns, digrams, trigrams
 - Attack becomes difficult if alphabet size is large
- Transposition
- Poly-alphabetic: periodic or running key
- Codes versus ciphering
 - Codes are stronger, and also achieve data compression

Some Popular Systems

- DES, 3DES
- Public key systems:
 - RSA: based on difficulty of factoring
 - Galois-Field (GF) system: based on difficulty of finding logarithm
 - Based on knapsack problem

Key Management

- Keys need to be generated periodically
 - New users
 - Some keys may be compromised
- Addressing the O(n^2) problem with key distribution
 - Link encryption
 - Key Distribution Centre (KDC): all eggs in one basket
 - Multiple KDCs: better security

Taxonomy of Ciphers

- Block ciphers: divide plain text into blocks and encrypt each independently
- Properties required:
 - No bit of plain text should appear directly in cipher text
 - Changing even one bit in plain text should result in huge (50%) change in cipher text
 - Exact opposite of properties required for systematic error correction codes
- Stream cipher: encryption depends on current state

Some Non-Crypto Attacks

- Man-in-the-middle attack: play a trick by being in the middle
- Traffic analysis
 - Can learn information by just looking at presence/absence of traffic, or its volume
 - Can be countered using data padding
- Playback or replay attacks
 - To counter: need to verify timeliness of message from sender while authenticating
 - Beware of issues of time synchronization

Error Control and Cryptography

- Internal error control: error control is internal to encryption (before encryption)
 - Can provide automatic authentication
- External error control: error control is external to encryption (after encryption)
 - Required for error correction

Next week...

- Denial of Service Attacks
 - Assigned Reading