Lecture 31

CS625: Advanced Computer Networks
Fall 2003
Friday, 07 November 2003

Bhaskaran Raman
CSE, IIT-Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/cs625-fall2003/outline.html

Topic for today

• Web cache sharing
• Scribe for today?

Web Caching

• Purposes:
 - Reduce network bandwidth consumption
 - Reduce server load
 - Reduce client latency
• Found to be very effective, especially proxy-based caching
• Cache sharing?

Cache Sharing: ICP

• ICP: Internet Cache Protocol
 - Local cache miss ===> multicast query to all other caches
 - Improves cache hit-ratio
 - Communication and processing overhead
 - Huge overhead even for a set of 4 caches
 - How to reduce the overhead?
Alternative: Summary-Cache
- Maintain compact summary of cache directory
- On local miss, query only those caches which potentially have the web page
- Two sources of overhead
 - False-hit, false-miss
- Two issues to resolve:
 - When to do summary updates?
 - How to summarize?
- Two factors limiting scalability
 - Network overhead, memory

Impact of Update Delays
- Delay summary update until $X\%$ of cache documents are “new”
- $X = 0.1\%, 1\%, 2\%, 5\%, 10\%$
- Trace-driven simulations
- Delay threshold of 1-10\% works well in practice
- Translates to update frequency of about once in 5 minutes

Summary Representations
- Summary needs to be in main memory
- Memory size is a bottleneck
- Two simple possibilities:
 - Exact-Directory
 - Store 16-byte MD5 hash of URL
 - Too much memory requirement
 - Server-name
 - Store only server name
 - Too many false-hits

Bloom Filter
- Represent a set $A = \{a_1, a_2, \ldots, a_n\}$ to support membership queries
- Allocate vector of m bits
- Choose hash functions h_1, h_2, \ldots, h_k with range $[1,m]$
- For each element a_i, mark bits $h_1(a_i), h_2(a_i), \ldots, h_k(a_i)$
- False-positives possible
- Choose k, m such that false-positive probability is small
Bloom Filter: Choosing k and m

- Insert n keys \implies probability of a bit being 0 is $p = (1-1/m)^{kn}$
- Probability of false positive: $(1-p)^k$
 - Approximately $(1-e^{(kn/m)})^k$
 - Minimized when k is $\ln 2 \times (m/n)$
 - Minimum value is $1/2^k = (0.6185)^{(m/n)}$
- Probability decreases exponentially with m/n
 - Load factor $\alpha = (m/n) = \# \text{ bits per data item}$
 - For $\alpha=10$, $k=4$, false-positive prob. is 1.2%

Using Bloom Filters for Summary-Cache

- Hash on URL
- Should also support changes to set A
 - Maintain counter with each bit
 - 4 bits sufficient in practice
- Proxy builds bloom filter, sends to other proxies
- Load factor of 8 or 16 sufficient in practice
 - Same hit ratio as exact directory
- Scalability: small memory requirement even for 100 proxies