Topic 01: Case Studies in Embedded Sensor Applications

Tuesday 20 Feb 2007

ICTP-ITU School on Wireless Networking for Scientific Applications in Developing Countries

Bhaskaran Raman
Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/

Outline

- Embedded wireless sensor networks: what? why?
 - Overview of potential applications
- Case studies (* indicates amount of detail):
 - Great Duck Island habitat monitoring (****)
 - Redwood tree micro-climate monitoring (**)
 - Volcano monitoring (**)
 - Bridge monitoring (**)
 - Industrial motor monitoring (*)

Outline

- Embedded wireless sensor networks: what? why?
 - Overview of potential applications
- Case studies (* indicates amount of detail):
 - Great Duck Island habitat monitoring (****)
 - Redwood tree micro-climate monitoring (**)
 - Volcano monitoring (**)
 - Bridge monitoring (**)
 - Industrial motor monitoring (*)

Wireless Sensor Networks

- What are sensors?
- Why "wireless" sensor "networks"?
- What do we need to make a wireless sensor network node?
 - Sensor
 - Processing
 - Memory
 - Radio
 - Called a sensor mote

Sensor Motes

Pictures courtesy Google

Embedded Wireless Sensor Networks

- Trends in semi-conductor technology
 - Moore's Law
 - More silicon per unit area
 - More processing per unit area
 - Miniaturization becomes possible
- Miniaturization of: computing, radios, sensors
- Reference: "Overview of Sensor Networks", D.
 Culler, D. Estrin, M. Srivastava, IEEE Computer Aug 2004

Sensor Network Applications

- Monitoring space
- Monitoring things
- Monitoring interaction of things in an encompassing space

Applications: Monitoring Spaces

• Environmental and habitat monitoring, precision agriculture, indoor climate control

Biological: Habitat

Chemical: Rivers

Physical: Agriculture

Monitoring Things

• Structural monitoring, condition based equipment maintenance, patient health monitoring/diagnostics

Bridge Health

Equipment Maintenance

Pictures courtesy Google

Monitoring Interaction of things in an encompassing space

 Wildlife tracking, disaster management, manufacturing process flow

Animal Tracking

Disaster Management

Pictures courtesy Google

Taboo Application Space

- Non-technical, political point (any technology space which requires funding cannot be purely technical)
- For these lectures, we will talk about no military applications
- Why is this taboo?
 - What is the most technologically advanced military doing today?
 - My opinion: such applications will only add to human suffering

Processing, Storage, Battery

• Microprocessors:

- 1 mW at about 10MHz speed
- Duty cycle of 1% ==> 10 micro-watts

• Memory:

- About 10KB of RAM, 100KB of ROM

• Battery:

- Typically about 1AH per cu.cm.
- Solar power: 10mW per sq.cm. outdoors, 0.01 0.1mW per sq.cm. indoors
- Mechanical vibrations: 0.1 mW

Sensors, Radios

• Sensors:

- Size, power consumption depends on kind of sensor
- Typically a few mW
- Can be quite high too

• Radios:

- About 10-20mW for upto 10m range
- Multi-hop network
- Tx of 1 bit == about 1000 instructions

Sensor Mote Requirements

- Typically long running, even up to one year
- Some basic processing and networking
- No electricity
- Interaction with environment rather than user

Issues in Sensor Networks

- MAC, routing, data dissemination
 - Energy conservation
 - Lots of literature in this domain
- Localization, time synchronization
- Topology, power control
- Operating system or software support
- Need to look at case studies to appreciate these...

Outline

- Embedded wireless sensor networks: what? why?
 - Overview of potential applications
- Case studies (* indicates amount of detail):
 - Great Duck Island habitat monitoring (****)
 - Redwood tree micro-climate monitoring (**)
 - Volcano monitoring (**)
 - Bridge monitoring (**)
 - Industrial motor monitoring (*)

A Detailed Study of a Sensor Network Application

- Reference: "Wireless Sensor Networks for Habitat Monitoring", A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA (Wireless Sensor
 - Networks and Applications), Sep 2002
- Monitoring seabird nesting environment (Leach's Storm Petrel)

Picture: Courtesy Google

Great Duck Island, Maine

Pictures: Courtesy Google

Habitat Monitoring and Sensor Networks

- Impacts of human presence on plants and animals
- Minimal disturbance is crucial while monitoring
 - Especially seabird colonies
 - 20% mortality of eggs due to a 15-min visit
 - Repeated disturbance ==> birds may abandon
 - Leach's storm petrels desert nesting burrows if disturbed in first 2 weeks of incubation
- Natural answer: wireless sensor networks

Motivation: Life Scientists' Perspective

- Usage pattern of nesting burrows over the 24-72 hour cycle when one or both members of a breeding pair alternate incubation and feeding at sea
- Changes in burrow and surface environmental parameters during the 7-month breeding season
- Differences in micro-environments with and without large numbers of nesting petrels

Motivation: Sensor Networks Perspective

- Application-driven approach better than abstract problem statements
 - Separate actual problems from potential ones
 - Relevant versus irrelevant issues
- Develop an effective sensor network architecture
 - Learn general solutions from specific ones

Data Acquisition Rates

- Presence/absence data: using temperature differentials
 - Every 5-10 min
- General environmental parameters:
 - Every 2-4 hours
- Popular vs unpopular sites:
 - Every 1 hour, at the beginning of the breeding season

System Goals

- Sensor network longevity: 9 months
 - Solar power where possible
 - Stable operation crucial
- Inconspicuous deployment
- Sensors: light, temperature, infrared, relative humidity, barometric pressure
- Remote data acquisition, management, and monitoring over the Internet
 - Interactive "drill-down"
 - In-situ operations also

System Architecture

Figure 1: System architecture for habitat monitoring

Remarks on the Architecture

- Hierarchical network
- Solar panel at gateways and base-station
- In-situ retasking possible
 - Example: collect temperature beyond a certain threshold, no need for all temperature readings
- Base-station has satellite connectivity
- Base-station has RDBMS, backed up every 15min to server at UCBerkeley

The Hardware Platform

Figure 2: Mica Hardware Platform: The Mica sensor node (left) with the Mica Weather Board developed for environmental monitoring applications

Features of the Platform

- Mote called Mica:
 - 4MHz Atmel Atmega 103 microcontroller
 - Single channel 916 MHz radio from RF Monolithics (40Kbps)
- Battery: pair of AA + DC boost converter
- Size: 2.0 x 1.5 x 0.5 inches
- Separate sensor board called the Mica weather board

Packaging and Deployment

Source: "Wireless Sensor Networks for Habitat Monitoring", A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Figure 3: Acrylic enclosure used for deploying the Mica mote.

Sensor Characteristics

Sensor	Accuracy	Interchangeability	Sample Rate	Startup	Current
Photoresistor	N/A	10%	$2000~\mathrm{Hz}$	10 ms	1.235 mA
I ² C Temperature	1 K	0.20 K	2 Hz	500 ms	0.150 mA
Barometric Pressure	$1.5~\mathrm{mbar}$	0.5%	10 Hz	$500~\mathrm{ms}$	0.010 mA
Barometric Pressure Temp	$0.8~\mathrm{K}$	0.24 K	10 Hz	$500~\mathrm{ms}$	0.010 mA
Humidity	2%	3%	500 Hz	500-30000 ms	0.775 mA
Thermopile	3 K	5%	$2000~\mathrm{Hz}$	$200~\mathrm{ms}$	0.170 mA
Thermistor	5 K	10%	$2000~\mathrm{Hz}$	$10~\mathrm{ms}$	$0.126~\mathrm{mA}$

Table 1: Mica Weather Board: Characteristics of each sensor included on the Mica Weather Board.

Source: "Wireless Sensor Networks for Habitat Monitoring", A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Energy Budget

Total energy available: 2200 mAh == 8.148 mAh/day x 9 months

Operation	nAh
Transmitting a packet	20.000
Receiving a packet	8.000
Radio listening for 1 millisecond	1.250
Operating sensor for 1 sample (analog)	1.080
Operating sensor for 1 sample (digital)	0.347
Reading a sample from the ADC	0.011
Flash Read Data	1.111
Flash Write/Erase Data	83.333

Source: "Wireless Sensor Networks for Habitat Monitoring", A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Table 2: Power required by various Mica operations.

Gateway: Design Choices

- 802.11b based
 - CerfCube platform: StrongArm-based
 - IBM micro-drive with 1GB storage
 - 2.5W power consumption
 - 12dBi omni-antenna ==> 1000 feet range
- Mote-mote connection
 - 14dBi directional antenna ==> 1200 feet range
- Packet reception rate was similar in either case, but former requires solar panel

Source: "Wireless Sensor Networks for Habitat Monitoring", A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Figure 4: Thermopile data from a burrow mote on GDI during a 19-day period (July 18, 2002 to August 5, 2002).

Temperature difference due to bird (verified using recorded bird call)

Communication Protocols

- MAC protocol, routing protocol
- Current implementation: single-hop communication to gateway
 - Periodically scheduled
- Possibilities:
 - Determine routing tree, wake up adjacent levels periodically
 - Wake up nodes along a path or subtree periodically
- Low power MAC: extend start symbol to match the wake-up frequency

Outline

- Embedded wireless sensor networks: what? why?
 - Overview of potential applications
- Case studies (* indicates amount of detail):
 - Great Duck Island habitat monitoring (****)
 - Redwood tree micro-climate monitoring (**)
 - Volcano monitoring (**)
 - Bridge monitoring (**)
 - Industrial motor monitoring (*)

Environment Monitoring: Example

- Redwood trees: microclimate monitoring
 - Rate of photosynthesis
 - Water and nutrient transport
 - Growth patterns
- Prior approach: suite of instruments, wires
- Can use wireless sensors instead

Source: Overview of Sensor Networks, D. Culler, D. Estrin, M. Srivastava, IEEE Computer Aug 2004

The Sensor Node

Source: Overview of Sensor Networks, D. Culler, D. Estrin, M. Srivastava, IEEE Computer Aug 2004

Some Measurements

Source: Overview of Sensor Networks, D. Culler, D. Estrin, M. Srivastava, IEEE Computer Aug 2004

Wireless Sensor Network for Volcano Monitoring

Reference: "Deploying a
Wireless Sensor Network on an
Active Volcano", Geoffrey
Werner-Allen, Konrad Lorincz,
Matt Welsh, Omar Marcillo, Jeff
Johnson, Mario Ruiz, Jonathan
Lees, IEEE Internet Computing,
Mar/Apr 2006

Source: "Deploying a Wireless Sensor Network on an Active Volcano", G. Werner-Allen et. al., IEEE Internet Computing, Mar/Apr 2006

Tungurahua, Ecuador

Source: "Deploying a Wireless Sensor Network on an Active Volcano", Presentation by Matt Welsh, Harvard University

Monitoring Equipment

Source: "Deploying a Wireless Sensor Network on an Active Volcano", Presentation by Matt Welsh, Harvard University

Sensor Network Architecture

Figure 2: Sensor network architecture. Nodes form a multihop routing topology, relaying data via a long-distance radio modem to the observatory. A GPS receiver is used to establish a global timebase. The network topology shown here was used during our deployment at Reventador.

Source: "Fidelity and Yield in a Volcano Monitoring Sensor Network", G. Werner-Allen et. al., OSDI 2006

Deployment Map

Source: "Fidelity and Yield in a Volcano Monitoring Sensor Network", G. Werner-Allen et. al., OSDI 2006

Figure 3: Map of sensor deployment at Volcán Reventador. In addition to the 16 sensor nodes, two broadband seismometers with data loggers (RRVENT and RRLAV3) were colocated with the network.

Challenges Encountered

- Event detection: when to start collecting data?
- High data rate sampling
- Spatial separation between nodes
- Data transfer performance: reliable transfer required
- Time synchronization: data has to be time-aligned for analysis by seismologists

BriMon: Wireless Sensor Network based Bridge Monitoring

Two main issues: (1) Event detection, (2) Data transfer

Project at IIT-Kanpur: http://www.cse.iitk.ac.in/users/braman/brimon.html

More Applications: Industrial Monitoring

Source: "WiBeaM: Wireless Bearing Monitoring System", Lt Cdr VMD Jagannath, Bhaskaran Raman, WISARD 2007.

Fig. 7. Motor with sensor mounted

Challenge

- Lots of sensor network literature claims:
 applications involving 100s or 1000s of nodes
- Think of one such application
 - Must be as well grounded as possible (preferably an extension of something which has already been built)
 - Specify what is being sensed, how often, etc.
 - Ensure that a sensor "network" is needed
 - Preferably non-military

Summary

- Embedded Wireless Sensor Networks:
 - Possible today due to advances in several domains
 - Some interesting applications have been built