Topic 03: TinyOS and Telos

Tuesday 20 Feb 2007

ICTP-ITU School on Wireless Networking for Scientific Applications in Developing Countries

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/

TinyOS

- Reference: "The Emergence of Networking Abstractions and Techniques in TinyOS", Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric Brewer, and David Culler, NSDI 2004.
 - Section-2
- More related to embedded computing than wireless

TinyOS Goals

- An "operating-system" for embedded sensor nodes
- Different requirements for such platforms
 - Should be designed for current & future hardware
 - Cater to a wide variety of applications
 - Limited resources: memory, power
 - Concurrency-intensive operation: data driven

TinyOS Design Overview (1 of 2)

- Modular framework:
 - A set of software components and interfaces
 - No strict definition of system/user boundary
- Issues addressed by this approach:
 - Adaptation to heterogeneous hardware
 - Reuse of software
 - Adaptation to different application requirements
 - Put together required software components
 - Memory resource constraints
 - Use only the required components

TinyOS Design Overview (2 of 2)

- Event-driven concurrency model:
 - Hardware events and software tasks
- Issues addressed by this approach:
 - Requirement for concurrency
 - Event-driven model is natural: no blocking or polling
 - Limited memory
 - Many concurrent tasks using just one stack
 - Power savings
 - No tasks ==> sleep

TinyOS Design

- Interface: a set of *commands* and *events*
 - Command: sub-routine to perform some action
 - Event: completion of request, or external trigger
 - Can be bound to a hardware interrupt
- Component:
 - Provides a set of interfaces (used by others)
 - *Uses* a set of interfaces (provided by others)
- An application "wires" together the interfaces of a set of components

Blink: An Example TinyOS Appln.

- Split into Blink.nc & BlinkM.nc
- BlinkM.nc:
 - The module: the actual implementation
- Blink.nc:
 - The configuration: the "wiring-up" of interfaces
- Other examples: CountLeds, CountSend, CountReceive

The Telos Platform

- Reference: "Telos: Enabling Ultra-Low Power Wireless Research", Joseph Polastre, Robert Szewczyk, and David Culler, IPSN/SPOTS 2005.
- Latest among a series of embedded sensor platforms from U.C.Berkeley/Intel

Family of Berkeley Motes

Mote Type	WeC	René	René2	Dot	Mica	Mica2Dot	Mica 2	Telos	
Year	1998	1999	2000	2000	2001	2002	2002	2004	
Microcontroller									
Туре		LS8535	ATmeg	_	ATmega128			TI MSP430 48	
Program memory (KB)		8	16	16		128			
RAM (KB)		0.5	1	1		4			
Active Power (mW)		15	15		8		33 75	3	
Sleep Power (µW)		45		45		75		15	
Wakeup Time (µs)	1/	000	36	5		180	180	6	
Nonvolatile storage								$\overline{}$	
Chip			C256		AT45DB041B			ST M25P80	
Connection type			² C		SPI			SPI	
Size (KB)		3	32		512			1024	
Communication									
Radio		TR1	1000		TR1000 CC1000			CC2420	
Data rate (kbps)			10		40 38.4			250	
Modulation type		00	OK		ASK FSK			O-QPSK	
Receive Power (mW)			9		12 29			38	
Transmit Power at 0dBm (mW)	36				36 42			35	
Power Consumption									
Minimum Operation (V)	2.7 2.7			7		2.7		1.8	
Total Active Power (mW)		2	24		27	44	89	41	
Programming and Sensor Interface									
Expansion	none	51-pin	51-pin	none	51-pin	19-pin	51-pin	16-pin	
Communication	IEEE 1284 (programming) and RS				s additional ha	rdware)	USB		
Integrated Sensors	no	no	no	yes	no	no	no	yes	

Source: "Telos: Enabling Ultra-Low Power Wireless Research", J. Polastre et. al., IPSN/SPOTS 2005.

Microcontroller

Manufacturer	Device	RAM	Flash	Active		Release
		(kB)	(kB)	(mA)	(μ A)	
Atmel	AT90LS8535	0.5	8	5	15	1998
	Mega128	4	128	8	20	2001
	Mega165/325/645	4	64	2.5	2	2004
General	PIC	0.025	0.5	19	1	1975
Instruments						
Microchip	PIC Modern	4	128	2.2	1	2002
Intel	4004 4-bit	0.625	4	30	N/A	1971
	8051 8-bit Classic	0.5	32	30	5	1995
	8051 16-bit	1	16	45	10	1996
Philips	80C51 16-bit	2	60	15	3	2000
Motorola	HC05	0.5	32	6.6	90	1988
	HC08	2	32	8	100	1993
	HCS08	4	60	6.5	1	2003
Texas	TSS400 4-bit	0.03	1	15	12	1974
Instruments	MSP430F14x 16-bit	2	60	1.5	1	2000
	MSP430F16x 16-bit	10	48	2	1	2004
Atmel	AT91 ARM Thumb	256	1024	38	160	2004
Intel	XScale PXA27X	256	N/A	39	574	2004

Fig. 4. Microcontroller history: The main table contains traditional microcontrollers; the bottom two devices are 32-bit microprocessors presented for comparison.

Source: "Telos: Enabling Ultra-Low Power Wireless Research", J. Polastre et. al., IPSN/SPOTS 2005.

Current Consumption: Comparison

Operation	Telos	Mica2	MicaZ
Minimum Voltage	1.8V	2.7V	2.7V
Mote Standby (RTC on)	$5.1~\mu\mathrm{A}$	19.0 μ A	27.0 μA 🛦
MCU Idle (DCO on)	$54.5~\mu\mathrm{A}$	3.2 mA	3.2 mA
MCU Active	1.8 mA	8.0 mA	8.0 mA
MCU + Radio RX	21.8 mA	15.1 mA	23.3 mA
MCU + Radio TX (0d/8m)	19.5 mA	25.4 mA	21.0 mA
MCU + Flash Read	4.1 mA	9.4 mA	9.4 mA
MCU + Flash Write	15.1 mA	21.6 mA	21.6 mA
MCU Wakeup	$6~\mu \mathrm{s}$	$180~\mu s$	$180~\mu s$
Radio Wakeup	$580~\mu \mathrm{s}$	$1800~\mu \mathrm{s}$	860 μ s

Source: "Telos: Erabling Ultra-Low Power Wireless Research", J. Polastre et. al., IPSN/SPOTS 2005.

Reduced idle current

Reduced wakeup time

Reduced active current

Lower cut-off voltage

Radio Comparison

Туре		Nar	rowband	Wideband			
Vendor	RFM	Chipcon	Chipcon	Nordic	Chipcon	Motorola	Zeevo
Part no.	TR1000	CC1000	CC2400	nRF2401	CC2420	MC13191/92	ZV4002
Max Data rate (kbps)	115.2	76.8	1000	1000	250	250	723.2
RX power (mA)	3.8	9.6	24	18 (25)	19.7	37(42)	65
TX power (mA/dBm)	12 / 1.5	16.5 / 10	19 / 0	13 / 0	17.4 / 0	34(30)/ 0	65 / 0
Powerdown power (μA)	1	1	1.5	0.4	1	1	140
Turn on time (ms)	0.02	2	1.13	3	0.58	20	*
Modulation	OOK/ASK	FSK	FSK,GFSK	GFSK	DSSS-O-QPSK	DSSS-O-QPSK	FHSS-GFSK
Packet detection	no	no	programmable	yes	yes	yes	yes
Address decoding	no	no	no	yes	yes	yes	yes
Encryption support	no	no	no	no	128-bit AES	no	128-bit SC
Error detection	no	no	yes	yes	yes	yes	yes
Error correction	no	no	no	no	yes	yes	yes
Acknowledgments	no	no	no	no	yes	yes	yes
Interface	bit	byte	packet/byte	packet/byte	packet/byte	packet/byte	packet
Buffering (bytes)	no	1	32	16	128	133	yes *
Time-sync	bit	SFD/byte	SFD/packet	packet	SFD	SFD	Bluetooth
Localization	RSSI	RSSI	RŠSI	no	RSSI/LQI	RSSI/LQI	RSSI

Manufacturer's documentation does not include additional information.

Source: "Telos: Enabling Ultra-Low Power Wireless Research", J. Polastre et. al., IPSN/SPOTS 2005.

Significant aspect: wideband, noise-resilient modulation scheme

Summary

• TinyOS:

- Component-based OS for embedded platforms
- Event-driven model suited to embedded sensor applns.

• Telos:

- Hardware platform for embedded sensor applications
- CC2420 radio (802.15.4 compliant)