Topic 04: Networking Issues in Sensor Networks

Wednesday 21 Feb 2007

ICTP-ITU School on Wireless Networking for Scientific Applications in Developing Countries

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/

Outline

- MAC protocols: S-MAC, B-MAC
- Routing protocol approaches
- Transport protocol: PSFQ
- Time synchronization: FTSP
- Overview of other issues: localization, data aggregation, topology/power control

Outline

- MAC protocols: S-MAC, B-MAC
- Routing protocol approaches
- Transport protocol: PSFQ
- Time synchronization: FTSP
- Overview of other issues: localization, data aggregation, topology/power control

MAC Protocol

- Classical wireless protocol: CSMA/CA w/ RTS/CTS
 - Carrier-Sense: listen before transmit
 - Collision Avoidance: backoff before transmit, and on collision
 - Request-to-Send, Clear-to-Send to address hidden node
- Challenge in embedded sensor platforms:
 - Power consumption during listen is significant

S-MAC (Sensor MAC)

- Reference: "An Energy-Efficient MAC Protocol for Wireless Sensor Networks", Wei Ye, John Heidemann, Deborah Estrin, Infocom 2002
- S-MAC ideas:

- A Listen Sleep Listen Sleep

 Description:
- Periodic listen/sleep cycle B Listen Sleep Listen Sleep
- In listen phase, sleep on overhearing RTS/CTS
- Virtual clusters
 - Neighbours (only) have to synchronize
 - Listen time has to account for clock drift also
 - Initial setup: synchronizer and follower
 - At border of two overlapping clusters: nodes have to wake-up on two different cycles

B-MAC (Berkeley MAC)

- Reference: "Versatile Low Power Media Access for Wireless Sensor Networks", Joseph Polastre, Jason Hill, David Culler, SenSys 2004
- B-MAC ideas:
 - Long preambles (> sleep time) while transmitting
 - Listen time further reduced, no synchronization needed
- B-MAC exports interface:
 - For application specific adaptation
 Enable/disable CCA
 Enable/disable ACK
 B Sleep Preamble Tx
 - Low-power listening: preamble length & check interval

Check Interval & Energy Consumed

Source: "Versatile Low Power Media Access for Wireless Sensor Networks", Joseph Polastre, Jason Hill, David Culler, SenSys 2004

Figure 4: Contour of node lifetime (in years) based on LPL check time and network density. If both parameters are known, their intersection is the expected lifetime using the optimal B-MAC parameters.

S-MAC/B-MAC Applicability

- For which applications is S-MAC/B-MAC applicable?
 - ✓ Habitat monitoring
 - X Industrial motor monitoring (large sleep period, large data)
 - * Bridge monitoring (large sleep period, large data)
 - X Volcano monitoring (no sleep period, large data)

Routing Protocol

- Why is wireless different from wired?
 - Lack of link abstraction
 - Packet errors
 - Interference from neighbouring "links"
 - Self-interference (within a path)
 - Broadcast medium
- Challenge in embedded sensor platforms: low power
 - But blown out of proportion, in my opinion
 - Quick proof: no evaluation of any (non-trivial) routing protocol using any real application parameters

Some Routing Approaches

• Data centric:

- SPIN (Sensor Protocols for Information via Negotiation)
 - ADV, REQ, DATA
 - Better than flooding/gossiping
- Directed diffusion:
 - Flood query (specify value range, area of interest, etc.)
 - Response "diffuses" toward sink

• Hierarchical:

- LEACH (Low-Energy Adaptive Clustering Hierarchy)
 - Cluster head chosen randomly
 - Nodes choose which cluster to belong to
 - Cluster head rotates

Routing Approaches: Applicability

- For which applications are the above routing approaches applicable?
 - Habitat monitoring
 - X Industrial motor monitoring
 - * Bridge monitoring
 - X Volcano monitoring
 - ✓ No application has even considered using any of these
 - ✓ Too complex and abstract
 - ✓ No concrete application given
 - ✓ And I cannot think of any either

Routing Metrics

- Minimum-hop can cause problems
- Multi-hop LQI
 - 1/LQI is the metric
 - Assumes LQI to be stable over time
 - Assumption may not hold
 - Stability of routing?
- Used in the Redwood deployment

Transport Protocol

- Some applications require reliable data transfer
 - Examples: bridge monitoring, volcano monitoring, industrial motor monitoring
- TCP is not really applicable
 - Wireless errors
 - Broadcast medium
 - Congestion control is not an issue
 - Do not always have to deal with competing flows

PSFQ

- Reference: "Pump-Slowly, Fetch-Quickly (PSFQ): A Reliable Transport Protocol for Sensor Networks", Chieh-Yih Wan, Andrew T. Campbell, Lakshman Krishnamurthy, IEEE Journal on Selected Areas in Communications (JSAC), Vol. 23, No. 4, April 2005
 - An example protocol designed for sensor networks
 - For reliable transfer of data
 - Specifically designed for one-to-many data transfer,
 works for one-to-one transfer too
 - Example usage: code update from base to all other nodes

PSFQ: How it Works

• Main idea:

- Pump-Slowly: refers to data going in forward dirn.
- Fetch-Quickly: refers to error recovery in reverse dirn.
- Cycle repeats until data transfer is done successfully

• Protocol details:

- Timers: Pump timer & fetch timer are used
- Fetch can be signal strength based (who is parent in tree)
- Proactive fetch: when nothing received for some time
- Report bit: used by sender to request for ACK

PSFQ Performance

- When can you expect PSFQ to perform well?
 - When effect of pipelining is seen
 - That is, multiple simultaneous hops being used simultaneously
- Crucial parameters: timers
 - May not be that easy to determine optimally
 - Industrial monitoring paper reports poor performance

PSFQ Applicability

- For which applications is PSFQ applicable?
 - * Habitat monitoring (reliability not needed)
 - X Industrial motor monitoring (they have used it, but reported poor performance, small networks anyway)
 - * Bridge monitoring (PSFQ is an overkill)
 - X Volcano monitoring (PSFQ is an overkill)

Time Synchronization

- Required for some applications
- Useful for other protocols (e.g. MAC)
- Challenges:
 - Different clocks
 - Clocks drift
 - Clock drift rate may change (with temperature, for e.g.)
 - Multi-hop

FTSP

- FTSP: Flooding Time Synchronization Protocol
 - Reference: "The Flooding Time Synchronization Protocol", Miklós Maróti, Branislav Kusy, Gyula Simon, Ákos Lédeczi, SenSys 2004.
- Goal: achieve micro-second granularity synchronization for networks of 100s of nodes

FTSP: How it Works

- Message time-stamping to synchronize clocks
- Multiple such messages to estimate clock drift
 - Using linear regression
- Such synchronization messages can be sent by root, or any synchronized node

FTSP Applicability

- Which applications find use for FTSP?
 - ✓ Volcano monitoring (really needed? or was it used because the software was available?)
 - * Bridge monitoring (FTSP is an overkill)
 - * Industrial motor monitoring (no need for micro-s synch.)
 - * Habitat monitoring (no need for micro-s synch.)

Other Issues Considered in Literature

- Data aggregation
 - Scenario description lacks depth thus far
- Localization
 - Requirement description lacks depth thus far
- Topology, power control
 - Feasibility in question: RSSI variability
 - Usefulness in question: power consumption does not increase that much with tx-power in practice
- Security
 - Depth justified only for military applications (if at all),
 which is taboo for these lectures

Summary

- Several protocols designed in literature, books have been written
 - MAC, Routing, Transport, Synchronization
 - Data aggregation, Localization, Topology/power control,
 Security
- Field is rich for paper generation (lots of abstract constraints)
- But real applications thus far have used only simple protocols