Topic 06: Sensor Networks: Myth versus Reality

Wednesday 21 Feb 2007

ICTP-ITU School on Wireless Networking for Scientific Applications in Developing Countries

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/

Sensor Network Protocol Design

- 1. Protocol design depends on application needs
 - → Consider these during the design
- 2. Wide variety of simplifying design choices
 - → Explore all design choices

Dependence on Application Requirements (1 of 6)

• What to sense?

- What phenomenon? What sensor?
- Decides the power consumption of the sensor
- Wide range possible
- E.g. Humidity: 6.5 nAH, Thermistor: 0.35 pico-AH
- Compare: Packet-Tx: 20 nAH
- (Numbers from GDI paper, WSNA'02)
- Other examples: accelerometers for low frequency, today's precision pollution sensors

How does it compare with radio power consumption?

Dependence on Appln. Reqmts. (2 of 6)

- What is the nature of the expected traffic?
 - How often to sense?
 - GDI: once in five minutes
 - Industrial motor monitoring: once a day at 50-100Hz
 - How often to send the data to a sink?
 - Bridge monitoring: once in a few days is alright
 - Volcano monitoring: online collection useful
 - What is the quantity of data?
 - GDI: few bytes per 5 min
 - Volcano monitoring: a few MB per quake sample
 - What is the nature of data fidelity requirement?
 - GDI, Redwood: alright to lose a few samples
 - Bridge, volcano monitoring: all samples crucial for data analysis

MAC, routing, transport design depend on this

Dependence on Application Requirements (3 of 6)

- Nature of topology
 - How many nodes?
 - Volcano monitoring: 16 nodes
 - GDI, Redwood, Industrial monitoring: few tens
 - Bridge monitoring: 100-200 imaginable
 - Over what region?
 - Industrial monitoring: indoor, few rooms
 - GDI, Redwood: outdoor environment, foliage
 - Bridge monitoring: outdoor, many LOS links
 - Volcano monitoring: mostly LOS links

How many hops? What is the nature of link behaviour?

Dependence on Application Requirements (4 of 6)

- Can sensors operate independently or is global coordination required?
 - Not all applications require global coordination!
 - Redwood deployment: collected data at the end
 - Pollution monitoring:
 - Each node can collect data independently and store
 - To be retrieved later
 - Bridge monitoring:
 - Only data from within a bridge span is correlated

Dependence on Application Requirements (5 of 6)

How long should it run?

- Some applications may have short term usage
- E.g. short term analysis of bridge's health

• Is form factor a constraint?

- If not, large batteries, high-gain antennas can be used
- Is cost a constraint?
 - If not, GPS for synchronization, more powerful nodes
- Is power a constraint?
 - In some settings, esp. indoors, power may not be a factor at least for some nodes

Dependence on Application Requirements (6 of 6)

- Is time synchronization required? At what granularity?
 - Will decide the complexity of the synchronization protocol
- Is location information required? At what granularity?
 - No clear statement has been made thus far for any real application (to my knowledge)
- Is mobility required?
 - Few real applications have demonstrated a need

Design Choices (1 of 3)

Wired sensor networks

- Viable option in some cases
- If wireless, need to be clear on reasons

Connection to power outlet

- May be possible at least for a subset of the nodes indoors

Large batteries

- When form factor is not a constraint
- Can side-step several issues arising from lack of power

Design Choices (2 of 3)

- Some nodes with far greater power, CPU, memory
 - Imaginable in most situations
 - Many application deployments have used this approach

Directional antennas

- Increase range, reduce number of hops
- Perhaps a single hop network!
- Many application deployments have used this

GPS at some locations

- Time synchronization issues side-stepped

Design Choices (3 of 3)

Centralized design/algorithms

- Single sink => single point of failure anyway
- Scaling to a few hundred nodes should not be a big issue

Multiple channels, multiple radios

- If interference an issue, use multiple channels & radios
- 802.15.4 has 16 channels at 2.4 GHz

Planned deployment instead of ad-hoc

- Many deployments planned anyway
- Planned => avoid unnecessary complexity

A Critique of Sensor "Networks"

- 1. Protocol design depends on application needs
 - → But protocol papers have little/no description of appln.
- 2. Wide variety of simplifying design choices
 - → But narrow set of design choices actually considered
- 3. Evaluation results will depend on parameters
 - → But evaluation parameters typically not justified
- 4. Networking issues should emerge from real applns.
 - → Very few issues articulated thus far

Whither Sensor Networks?

- Application driven design required
 - Some applications have been deployed
 - But no application paper talks about any serious networking problem in-depth
 - Amount of work in protocol design: disproportionately huge!
 - Main flaw: looking for general solution to begin with!
- Alternative: bottom-up approach
 - Specific solution-1, specific solution-2, ...
 - Then look for generality from specific solutions