CS698T Wireless Networks: Principles and Practice

Topic 03 RF Propagation, Path Loss

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Topic 03

RF Propagation

Questions:

How does RF propagate with distance? Behaviour under different environments How to quantify these?

Goals:

Estimate coverage area, link performance

Use:

Determine network design parameters

- Locations of transmitters
- Transmit power
- Type of antenna

Three Basic Propagation Phenomena

Electro-Magnetic Spectrum

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur T

Topic 03

dB: Relative Measure (to measure propagtion)

Gravitational force on a mass *m* at distance *d/2* **4 timer more** Gravitational – force on a mass *m* at distance *d* Gravitational force on a mass *m* at distance 10d 100 times less

 $dB = 10 \times \log_{10}(ratio)$

6dB more

20dB less

Measuring Path Loss in dB

Path loss at
$$A = 10 \times \log_{10}(\frac{P_t}{P_a})$$

Path loss at $B = 10 \times \log_{10}(\frac{P_t}{P_b})$

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur To

Topic 03

Measuring Absolute Power in dBm

(Absolute power P) $mW \equiv$ (Relative power of P w.r.t. 1mW) $dBm \equiv$ $10 \times \log_{10}(\frac{P}{1mW})$

> Examples: $1mW \equiv 0dBm$ $0.1mW \equiv -10dBm$ $10mW \equiv 10dBm$ $100mW \equiv 20dBm$

Putting Together dB and dBm

 P_t =20dBm, Path loss at A=30dB, P_a =? P_a = P_t -(Pathloss)=-10dBm

How to Estimate Path Loss?

The above calculations assume the use of isotropic antennae

Frii's Free-Space Formula

$$P_r = P_t \times \left(\frac{\lambda}{4 \times \pi \times d}\right)^2$$

Some more useful forms of the Frii's formula:

Path Loss Example

 $P_t = 50 \text{mW}$, 2.4GHz transmission, d = 2 km, $P_r = ?$

 $PathLoss = 32.5 + 20 \log_{10}(2400) + 20 \log_{10}(2) \approx 106 dB$ $P_r = P_t - PathLoss = 17 dBm - 106 dB = -89 dBm$

Other Losses

- Cable loss:
 - Depends on the kind of cable, and its length
 - WBC400: 6dB/100ft

Path Loss Remarks

- Free space path loss is idealistic
- In reality, there is more path loss
 - Proportional to d^3 or higher
- Several path loss models are available
 - For indoor environments, outdoor metropolitan, etc.

Path Loss Models

- Ground reflection (two-ray) model
- Knife-edge diffraction model
- Outdoor propagation models
- Indoor propagation models (site-specific)
 - Partition losses (measured)
 - Depends on material
- Quick References:
 - Chapter-4: Theodore Rappaport
 - http://people.deas.harvard.edu/~jones/es151/prop_models/propagation.html

Topic 03