CS698T Wireless Networks: Principles and Practice

Topic 05 Fading, Multipath

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Topic 05

Received Signal Strength

- It is a function of three components
 - Path loss
 - Long-term fading (slow)
 - Short-term fading (fast)

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Fading and Multipath

Short-term vs. Long-term Fading

Source: Mobile Communications, Jochen Schiller

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Topic 05

Channel Impulse Response

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur Topic 05

Figure 5.10 Example of an indoor power delay profile; rms delay spread, mean excess delay, maximum excess delay (10 dB), and threshold level are shown.

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

An Example Calculation

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur Topic 05

RMS Delay Spread Examples

Environment	Frequency (MHz)	RMS Delay Spread (σ _τ)	Notes	Reference
Urban	910	1300 ns avg. 600 ns st. dev. 3500 ns max.	New York City	[Cox75]
Urban	892	10–25 μs	Worst case San Francisco	[Rap90]
Suburban	910	200-310 ns	Averaged typical case	[Cox72]
Suburban	910	1960–2110 ns	Averaged extreme case	[Cox72]
Indoor	1500	10–50 ns 25 ns median	Office building	[Sal87]
Indoor	850	270 ns max.	Office building	[Dev90a]
Indoor	1900	70–94 ns avg. 1470 ns max.	Three San Francisco buildings	[Sei92a]

Source: Wireless Communications, Theodore Rappaport

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Some Remarks

- RMS delay spread is a good measure of multi-path
 - Urban environments: 2-10 us
 - Indoors: 10-500 ns
- Symbol time: time to transmit a bit (0/1)
- Symbol time ~ RMS delay spread ==> Inter-Symbol Interference (ISI)
 - Equalization required
 - Generally, ISI results when
 - symbol time < 10 x RMS-delay-spread

Topic 05