CS698T Wireless Networks: Principles and Practice

Topic 06 Modulation

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Modulation

- Modulation: the process of converting a digital signal to "ap propriate"s ignals on wire or on air (wireless)
- Wireless:
 - Digital modulation: converting the digital signal to an analog signal
 - This results in a signal with bandwidth proportional to B Hz, if the digital signal is B bits/sec

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

The Need for Analog Modulation

- Cannot send a signal of frequency B Hz directly:
 - Antenna size may be inappropriate
 - Propagation characteristics may not be desirable
 - Frequency Division Multiplexing (FDM) not possible
- Hence analog modulation:
 - Convert one frequency range to another
 - Using a carrier frequency

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Modulation at the Transmitter

Also known as keying

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Demodulation at the Receiver

An RF Signal

 $g_t = A_t \sin(2 \times \pi \times f_t \times t + \phi_t)$

- Has three components: amplitude, frequency, and phase
- Modulation/keying can be based on any of these three (or a combination)

Amplitude Shift Keying

data is o and with -1 VISCH the signal corre

Figure 2.23 Amplitude shift keying (ASK)

Source: Mobile Communications, Jochen Schiller

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Frequency Shift Keying

Phase Shift Keying

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Some Remarks

- Phase Shift Keying: binary, quadrature, etc.
 - 802.11b uses BPSK, QPSK, CCK
- Metrics in modulation:
 - Spectral efficiency: bits/sec/hz
 - Power efficiency
 - Robustness to noise

BER vs. SNR

- For a given modulation:
 - Bit-Error-Rate (BER) is a function of the Signalto-Noise-Ratio (SNR)
- Thermal noise: k x T x B
 - k: Boltzmann's constant = 1.38 x 10^-23
 - T: temperature in Kelvin
 - B: bandwidth in Hz
- Strictly, Signal-to-Interference-and-Noise-Ratio (SINR) must be used

Topic 06

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Spread Spectrum

- Spreading a signal over a wider frequency range
 - Avoids narrow-band interference
 - E.g. 802.11b Barker code: 10110111000
- Two techniques for spread-spectrum
 - Direct Sequence, Frequency Hopping

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur