CS698T Wireless Networks: Principles and Practice

Topic 09 Embedded Wireless Sensors: Application Case Studies

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

A Detailed Study of a Sensor Network Application

- Reference: W ireless Sensor Networks for Habitat Monitoring, A. M ainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA (Wireless Sensor Networks and Applications), Sep 2002
- Monitoring seabird nesting environment (Leach's Storm Petrel)

Picture: Courtesy Google

Great Duck Island, Maine

Pictures: Courtesy Google

CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur Jan-Apr 2007

Habitat Monitoring and Sensor Networks

- Impacts of human presence on plants and animals
- Minimal disturbance is crucial while monitoring
 - Especially seabird colonies
 - 20% mortality of eggs due to a 15-min visit
 - Repeated disturbance ==> birds may abandon
 - Leach's storm petrels desert nesting burrows if disturbed in first 2 weeks of incubation
- Natural answer: sensor networks

Motivation: Life Scientists' Perspective

- Usage pattern of nesting burrows over the 24-72 hour cycle when one or both members of a breeding pair alternate incubation and feeding at sea
- Changes in burrow and surface environmental parameters during the 7month breeding season
- Differences in micro-environments with and without large numbers of nesting petrels

Motivation: Sensor Networks Perspective

- Application-driven approach better than abstract problem statements
 - Separate actual problems from potential ones
 - Relevant versus irrelevant issues
- Develop an effective sensor network architecture
 - Learn general solutions from specific ones

Data Acquisition Rates

- Presence/absence data: using temperature differentials
 - Every 5-10 min
- General environmental parameters:
 - Every 2-4 hours
- Popular vs unpopular sites:
 - Every 1 hour, at the beginning of the breeding season

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

System Goals

- Sensor network longevity: 9 months
 - Solar power where possible
 - Stable operation crucial
- Inconspicuous deployment
- Sensors: light, temperature, infrared, relative humidity, barometric pressure
- Remote data acquisition, management, and monitoring over the Internet
 - Interactive "drill-down"
 - In-situ operations also

System Architecture

Remarks on the Architecture

- Hierarchical network
- Solar panel at gateways and base-station
- In-situ retasking possible
 - Example: collect temperature beyond a certain threshold, no need for all temperature readings
- Base-station has satellite connectivity
- Base-station has RDBMS, backed up every 15-min to server at UCBerkeley

The Hardware Platform

Source: Wirele ss Sensor Networks for Habitat Monitoring," A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Figure 2: Mica Hardware Platform: The Mica sensor node (left) with the Mica Weather Board developed for environmental monitoring applications

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Features of the Platform

- Mote called Mica:
 - 4MHz Atmel Atmega 103 microcontroller
 - Single channel 916 MHz radio from RF Monolithics (40Kbps)
- Battery: pair of AA + DC boost converter
- Size: 2.0 x 1.5 x 0.5 inches
- Separate sensor board called the Mica weather board

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Packaging and Deployment

Source: Wireles s Sensor Networks for Habitat Monitoring", A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002 Figure 3: Acrylic enclosure used for deploying the Mica mote.

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Sensor Characteristics

Sensor	Accuracy	Interchangeability	Sample Rate	Startup	Current
Photoresistor	N/A	10%	2000 Hz	10 ms	1.235 mA
I ² C Temperature	1 K	0.20 K	2 Hz	500 ms	0.150 mA
Barometric Pressure	1.5 mbar	0.5%	10 Hz	500 ms	0.010 mA
Barometric Pressure Temp	0.8 K	0.24 K	10 Hz	500 ms	0.010 mA
Humidity	2%	3%	500 Hz	$500\text{-}30000~\mathrm{ms}$	0.775 mA
Thermopile	3 K	5%	2000 Hz	200 ms	0.170 mA
Thermistor	5 K	10%	$2000 \ Hz$	$10 \mathrm{ms}$	$0.126~\mathrm{mA}$

Table 1: Mica Weather Board: Characteristics of each sensor included on the Mica Weather Board.

Source: Wireless Sensor Networks for Habitat Monitoring," A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Energy Budget Total energy available: 2200 mAh

== 8.148 mAh/day x 9 months

Operation	nAh
Transmitting a packet	20.000
Receiving a packet	8.000
Radio listening for 1 millisecond	1.250
Operating sensor for 1 sample (analog)	1.080
Operating sensor for 1 sample (digital)	0.347
Reading a sample from the ADC	0.011
Flash Read Data	1.111
Flash Write/Erase Data	83.333

Source: Wirele ss Sensor Networks for Habitat Monitoring, A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, WSNA, Sep 2002

Table 2: Power required by various Mica operations.

Gateway: Design Choices

- 802.11b based
 - CerfCube platform: StrongArm-based
 - IBM micro-drive with 1GB storage
 - 2.5W power consumption
 - 12dBi omni-antenna ==> 1000 feet range
- Mote-mote connection
 - 14dBi directional antenna ==> 1200 feet range
- Packet reception rate was similar in either case, but former requires solar panel

Figure 4: Thermopile data from a burrow mote on GDI during a 19-day period (July 18, 2002 to August 5, 2002).

Temperature difference due to bird (verified using recorded bird call)

Communication Protocols

- MAC protocol, routing protocol
- Current implementation: single-hop communication to gateway
 - Periodically scheduled
- Possibilities:
 - Determine routing tree, wake up adjacent levels periodically
 - Wake up nodes along a path or subtree periodically
- Low power MAC: extend start symbol to match the wake-up frequency

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Wireless Sensor Network for Volcano Monitoring

 Reference: Dep loying a Wireless Sensor Network on an Active Volcano," Geoffrey Werner-Allen, Konrad Lorincz. Matt Welsh, Omar Marcillo, Jeff Johnson, Mario Ruiz, Jonathan Lees, IEEE Internet Computing, Mar/Apr 2006

Source: "Deploying a Wireless Sensor Network on an Active Volcano," G. Werner-Allen et. al., IEEE Internet Computing, Mar/Apr 2006

Tungurahua, Ecuador

Source: D eploying a Wireless Sensor Network on an Active Volcano," Presentation by Matt Welsh, Harvard University

Monitoring Equipment

Source: D eploying a Wireless Sensor Network on an Active Volcano," Presentation by Matt Welsh, Harvard University

Sensor Network Architecture

Figure 2: Sensor network architecture. Nodes form a multihop routing topology, relaying data via a long-distance radio modem to the observatory. A GPS receiver is used to establish a global timebase. The network topology shown here was used during our deployment at Reventador.

Source: "Fidelity and Yield in a Volcano Monitoring Sensor Network," G. Werner-Allen et. al., OSDI 2006

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Deployment Map

Source: "Fidelity and Yield in a Volcano Monitoring Sensor Network," G . Werner-Allen et. al., OSDI 2006

Figure 3: Map of sensor deployment at Volcán Reventador. In addition to the 16 sensor nodes, two broadband seismometers with data loggers (RRVENT and RRLAV3) were colocated with the network.

Challenges Encountered

- Event detection: when to start collecting data?
- High data rate sampling
- Spatial separation between nodes
- Data transfer performance: reliable transfer required
- Time synchronization: data has to be timealigned for analysis by seismologists

More Applications: Industrial Monitoring

Source: "WiBeaM:Wireless Bearing Monitoring System," Lt Cdr VMD Jagannath, Bhaskaran Raman, WISARD 2007.

Fig. 7. Motor with sensor mounted

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

More Applications: BriMon

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

