CS698T Wireless Networks: Principles and Practice

Topic 10 IEEE 802.15.4

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Personal Area Networks (PAN)

- WLAN: IEEE 802.11
 - Ethernet matching speed
 - Range: O(100m)
- WPAN:
 - Low cost
 - Low power (battery should last several months)
 - Short range O(10m)
 - Small size

IEEE 802.15 Series

802.15.3 (UWB)

802.15.1 (Bluetooth)

High data rate Medium rate Multimedia applications Cell-phones, PDA QoS suited for voice Low rate Industrial, residential, medical applications Low power Low cost

802.15.4 (LR-WPAN)

ZigBee works handin-hand with 802.15.4

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

802.15.4/ZigBee Architecture

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

802.15.4 PHY

Table 1—Frequency bands and data rates

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur Topic 10

802.15.4 Device Classes

- Full Function Device (FFD)
 - Can act as PAN 'coor dinator"
 - Can talk to any other device
- Reduced Function Device (RFD)
 - Cannot be a t oordinator"
 - Can talk only to FFD
 - Very simple implementation

Network Topologies

Star network

Peer-to-peer network

Topics in 802.15.4/ZigBee

- MAC protocol
- Data exchange mechanisms
- Starting and maintaining PANs
- Routing (ZigBee)

Optional Beacons

- A PAN can be beacon-enabled or nonbeacon-enabled
 - Decided by the coordinator
 - Mechanism for power saving (if required)
- Beacon enabled ==> periodic beacons

Superframe Structure

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Superframe Structure (Continued)

Beacon Interval (BI) can be a multiple of the Superframe Duration (SD)

Figure 59—An example of the superframe structure Source: IEEE 802.15.4 specification

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Superframe Structure: Remarks

- CAP, then CFP
- Superframe has 16 slots
- Maximum of 7 slots for GTS
- A GTS may occupy more than one slot
- All GTS tx must end before start of beacon tx
- All tx in CAP must end before CFP (or beacon)
- ACKs are optional
 - Requirement specified in a data packet

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

CSMA Algorithm

- Called slotted CSMA in beaconed PANs
- Unslotted CSMA in non-beaconed PANs
- But both use "un its" of time ("slots" in 802.11 terminology)
 - aUnitBackoffPeriod: 20 symbols by default
- In beaconed PANs, the first backoff is aligned with the start of the super frame

CSMA: Variables Used

- BE (Backoff Exponent): backoff delay is for random[0,2^BE) units of time
- CW (Contention Window): the number of units to perform CCA (Clear Channel Assessment) after random backoff
 - Warning: do not confuse with 802.11 terminology
- NB: Number of Backoffs so far
 - Initialized to 0

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur Topic 10

Slotted CSMA

Default values: minBE=3, maxBE=5, limit=4

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Differences from 802.11 CSMA

- Have to finish by a specific time
 - Otherwise continue random delay in next superframe
- 802.11 has per-delay-slot CCA
 - Why CCA for two units in 802.15.4?
- No limit on number of retries in 802.11
- During init: BE=min(2,minBE) possible
 - If device is battery constrained
 - Allows device to save power by prioritizing its tx

Unslotted CSMA (Differences)

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Scanning and PAN Creation

- Scanning procedures: active, passive
- Active scan:
 - Send beacon request
 - A beaconed PAN coordinator need not respond to the request (periodic beacon will suffice)
 - A non-beaconed PAN coordinator will respond with a beacon
- Orphan scan: orphan notification command sent by device to a coordinator
- A new PAN started only after an active scan
 New PAN id is chosen (collision possible)

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

PAN id Collision

- Detection by coordinator:
 - On receiving a beacon frame with same PAN id
 - On receiving a PAN id collision notification
- Detection by device:
 - On receiving conflicting information
- Resolution:
 - Coordinator will perform active scan
 - Select new PAN id
 - Broadcast coordinator realignment message

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Data Transmission to Coordinator (Beaconed PAN)

Data Transmission to Coordinator (non-Beaconed PAN)

Coordinator Device
Data
ACK (optional)

 Data uses unslotted CSMA

- ACK does not use CSMA
 - Optional ACK
 - Requirement is indicated in the data packet

Data Transmission from Coordinator (Beaconed PAN)

- Presence of downlink data is indicated in beacon
 - Whenever device wakes up, it requests for data
 - Data removed from coordinator queue on ACK

Data Transmission from Coordinator (non-Beaconed PAN)

 No data pending at coordinator ==> send data of length zero

Peer-to-peer Data Transfers

- Unslotted CSMA or using synchronization
 - Synchronization specification beyond the scope of 802.15.4

Concept of Primitives

 A network layer provides a service which is used by a higher layer

