CS698T Wireless Networks: Principles and Practice

Topic 16 IEEE 802.11 (WLAN/WiFi)

Bhaskaran Raman, Department of CSE, IIT Kanpur

http://www.cse.iitk.ac.in/users/braman/courses/wless-spring2007/

IEEE 802.11 (WiFi)

- Part of 802.x series
 - 802.3 is Ethernet
- 802.11a, 802.11b, 802.11g specify three different PHY layers
 - MAC is the same
- 802.11a: 5.2 to 5.7GHz
- 802.11b/g: 2.4 to 2.4835GHz

802.11: What does it specify?

Figure 11—Portion of the ISO/IEC basic reference model covered in this standard

Source: IEEE 802.11 specification

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

802.11: What does it Specify?

- PHY sub-layer
 - 802.11a, 802.11b, 802.11g
- MAC sub-layer
 - Independent of the PHY
 - DCF (Distributed Coodrination Function)
 - CSMA/CA
 - PCF (Point Coordination Function)
- MAC management

802.11 PHY

- 802.11b data-rates (modulation schemes):
 - 1Mbps (BPSK), 2Mbps (QPSK), 5.5Mbps (CCK), 11Mbps (CCK)
- 802.11a and 802.11g data-rates:
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - OFDM + BPSK/QPSK/16QAM/64QAM
 - 802.11g also supports 802.11b data-rates and modulations (backwards compatible)

802.11b Channels

- Each channel is 22MHz wide
- Adjacent channels overlap
- Non-overlapping channels: 1, 6, 11
- Band recently delicensed in India for indoor, outdoor usage

Topic 16

802.11a Channels

802.11A Channel spacing

 Each channel is 20MHz wide

As of now,
band is not
free in India
for outdoor
use

Source: Cisco presentation

802.11 Service Sets

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

802.11 Extended Service Set (ESS)

MAC Classification

- Based on what dimension is used for multiplexing:
 - SDMA, TDMA, FDMA, CDMA
- Based on how control is achieved:
 - Central
 - (+) Easy to design/implement
 - (-) Single point of failure, bottleneck
 - Distributed
 - (+) Natural when there is no central information
- 802.11 specifies DCF (Distributed Coordination Function), PCF (Point Coordination Function)
 - PCF uses central control

Ethernet CSMA/CD: Prelude to 802.11 CSMA/CA

- CSMA/CD: Carrier-Sense Multiple Access with Collision Detection
 - Listen before transmit (CS)
 - Tx when (as soon as) medium is free (1-persistent)
 - Collision Detection (CD)
 - Backoff (exponential) on collision

802.11 CSMA/CA

- Collision detection impossible in wireless
 - Tx power is relatively very high near the transmitter
- Conceptual name is CSMA/CA: Carrier-Sense Multiple Access with Collision Avoidance
 - 802.11 calls it DCF (Distributed Coordination Function)
- Collision Avoidance:
 - Back-off before tx (even when no collision)
 - Contention Window (CW) in terms of number slots

Topic 16

The Backoff Procedure

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur Topic 16

- ACK missing ==> Deduce collision
 - Retransmit (have to content anew)
- SIFS should be < DIFS
 - Else, ACK timeout may occur unnecessarily

DCF Timing Relations

D1 = aRxRFDelay + aRxPLCPDelay (referenced from the end of the last symbol of a frame on the medium) D2 = D1 + Air Propagation Time Rx/Tx = aRXTXTumaroundTime (begins with a PHYTXSTART.request) M1 = M2 = aMACPrcDelay CCAdel = aCCA Time - D1

Figure 58—DCF timing relationships

Source: IEEE 802.11 Specifications

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Propagation Time is Important

(1)A finishes tx at time t

- (2)B senses the channel to be free at t, C senses the channel to be free at t+d
- (3)C starts sending at t+d+DIFS, this reaches B at t+d+DIFS+d
- (4)B should not have started tx by then ==> slottime should be < 2d

802.11 PCF Mode of Operation

Source: IEEE 802.11 Specification

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

IFS Relations

aSIFSTime and aSlotTime are fixed per PHY.

- aSIFSTime is: aRxRFDelay + aRxPLCPDelay + aMACProcessingDelay + aRxTxTurnaroundTime.
- aSlotTime is: aCCATime + aRxTxTurnaroundTime + aAirPropagationTime + aMACProcessingDelay.

The PIFS and DIFS are derived by the following equations, as illustrated in Figure 58.

PIFS = aSIFSTime + aSlotTime

 $DIFS = aSIFSTime + 2 \times aSlotTime$

Source: IEEE 802.11 Specification

The Hidden Node Problem

Medium is free DOES NOT IMPLY ok-to-transmit

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

The Exposed Node Problem

Medium is busy DOES NOT IMPLY not-ok-to-transmit

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur To

Hidden Node Solution: RTS/CTS

RTS/CTS Exchange Example

Source: IEEE 802.11 Specification

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Beacons and Probes

Beacon has: AP capabilities, beacon period, SSID, Traffic Indication Map (TIM)

- A client may be in the coverage area of many APs
- APs send periodic beacons
- Client may passively scan these
- Or, probe-response for active scanning

Authentication and Association

- A client has to
 - Authenticate itself to an AP
 - Then Associate itself
- A client may authenticate itself to many APs to speed-up roaming

802.11 Frame Format

Source: IEEE 802.11 Specification

Source: IEEE 802.11 Specification

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur 7

Throughput estimation in 802.11

- PLCP preamble + header: 24 bytes
- RTS: 20 bytes, CTS: 14 bytes
- MAC header: 28 or 34 bytes
- IP header: 20 bytes
- TCP header: 20 bytes
- UDP header: 8 bytes
- Bottomline: too much per-packet overhead!

Topic 16

802.11 Alphabet Soup

WLAN "Alphabet Soup": IEEE 802.11 Standards Activities

Cisco.com

- 802.11a: 5 GHz, 54 Mbps
- 802.11b: 2.4 GHz, 11 Mbps
- 802.11d: Multiple regulatory domains
- 802.11e: Quality of Service (QoS)
- 802.11f: Inter-Access Point Protocol (IAPP)
- 802.11g: 2.4 GHz, 54 Mbps
- 802.11h: Dynamic Frequency Selection (DFS) and Transmit Power Control (TPC)
- 802.11i: Security
- 802.11j: Japan 5 GHz Channels (4.9-5.1 GHz)
- 802.11k: Measurement
- 802.11m: Maintenance
- 802.11n: High-Speed

0 2013; Chen Systems, Int. All rights communit.

Source: Cisco presentation

802.11 Enterprise Deployment

Figure 2: A map of Roofnet, with a black dot for each of the 38 nodes that participated in the experiments presented in this paper.

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur

Source: Roofnet SIGCOMM04 paper

Long-Dist.: Digital Gangetic Plains

The Ashwini Network

Wireless Technologies

Wireless Technologies

Jan-Apr 2007 CS698T: "Wireless Networks: Principles & Practice", Bhaskaran Raman, Dept. of CSE, IIT Kanpur