
Channel Allocation in 802.11-based
Mesh Networks

Bhaskaran Raman
Department of CSE, IIT Kanpur, INDIA 208016

braman AT cse DOT iitk DOT ac DOT in

Abstract— IEEE 802.11 (WiFi) has been used beyond its
original intended purpose of a tether-free LAN. In this paper, we
are interested in the use of 802.11 in mesh networks. Specifically,
we consider those which involve directional antennas and long-
distance point-to-point links. In recent work, the 2P MAC
protocol has been designed to suit such a network architecture.
In this paper, we assume the use of the 2P MAC protocol in
the links of the network, and consider the problem of link
channel allocation. We first formulate the problem of minimizing
the mismatch between link capacities desired by the network
operator and that achieved under a channel allocation. We show
that this problem is NP-hard. We then explore several heuristics
for channel allocation and find a set of heuristics that achieve
the optimal allocation in most scenarios.

I. INTRODUCTION

IEEE 802.11 [1] (WiFi) was originally designed as a flexible
and cost-effective extension to ethernet-based LANs. Although
such operation is still the dominant use of WiFi, the popularity
and low-cost of the technology has motivated its use in several
other scenarios. In this paper, we are interested in its use in
long-distance mesh networks, with point-to-point links [2], [3],
[4], [5]. Such mesh networks are used, or are being planned,
in developed countries [5] as well as developing countries [2],
[3] alike, to provide low-cost broadband Internet access to
remote rural locations. The long-distance (up to 40km or more)
point-to-point links are formed using high-gain directional
antennae [6].

An important issue in such use of 802.11 is that the
CSMA/CA-based MAC protocol is not suited for the point-
to-point links. Our prior work [7], [8] describes a TDMA-
style MAC protocol called 2P, which utilizes the links in the
network optimally. 2P assumes a network model where each
node in the network has multiple radios, one for each point-to-
point link at the node. This is shown in Fig. 1. The figure also
shows a landline node which acts as the node which provides
Internet connectivity to the rest of the nodes. 2P operates
by switching each node in the network between Tx and Rx
phases (two phases, hence the name 2P) alternatively. In such
a scheme, the entire network can operate in a single channel,
while still keeping each link active in either direction at any
given time.

The above model of 2P operation has an important unre-
solved issue. 2P as described in [8] is agnostic about how
the capacity in a (half-duplex) link is apportioned across the
two directions of the link. In [8], for simplicity, we simply
apportion the available capacity equally in either direction.

Fig. 1. 802.11 mesh: nodes have one radio per link

Now, apportioning the link capacity equally in either di-
rection is clearly inappropriate. This is especially so since
in access networks we expect the download requirements to
be significantly higher than the upload requirements. In this
paper, we address this important issue. We stipulate a model
where the network operator has the freedom of dividing up a
link’s limited capacity in a flexible manner in either direction.
Each link in the network can have an arbitrary desired capacity
allocated for a given direction.

In the process of addressing the above issue, we also do
away with another assumption made by 2P. The 2P MAC
protocol assumes that the network topology is bipartite. In
this paper, we consider an arbitrary network topology. We
use multiple channels to divide the network into channel
subgraphs. A channel subgraph is a contiguous part of the
network using the same channel. 2P is used independently
within each channel subgraph.

We consider the problem of allocation of channels to the
links in the network. We view this problem as one of breaking
up the network into channel subgraphs. In this process, our
objective is two-fold. First, the channel subgraphs should be
bipartite, so that 2P can operate within each channel subgraph.
Next, more importantly, the channel allocation should be such
that the achieved link capacity is as close as possible to the
desired capacity.

We show that even for a simple case, finding an optimal
channel allocation that minimizes the mismatch between de-
sired and achieved link capacities is NP-hard. We then propose
and evaluate several possible heuristics for channel allocation.
We find that a simple set of heuristics can achieve optimal
channel allocation in most scenarios.

The key contributions of this paper are thus: (a) formulation
of the channel allocation problem to minimize the mismatch
between desired and achieved link capacities, and (b) heuris-

tics for solving it optimally. The rest of the paper is organized
as follows. The next section (Sec. II) presents a brief overview
of the 2P MAC protocol. In Sec. III we present the overall
system model, and describe the channel allocation scheme in
relation to the 2P MAC. Subsequently, in Sec. IV and Sec. V
we consider the issue of channel allocation to best fit the
desired link capacities. Sec. VI discusses prior work in related
settings. Finally, we present several open issues and future
directions in Sec. VII and conclude in Sec. VIII.

II. BACKGROUND: THE 2P MAC PROTOCOL

We now briefly describe the relevant details of the 2P MAC
protocol detailed in [7], [8]. The 2P MAC is a TDMA-style
protocol for mesh networks. It considers a network where each
node has multiple point-to-point links, each with a separate
directional antenna, as shown in Fig. 1.

Although the links use directional antennae, the links at a
node cannot really operate independently due to the presence
of side-lobes. That is, when a node is transmitting along a link,
it cannot simultaneously receive along another link, since the
reception will face interference from the transmitting radio at
that node.

However, it is possible to have synchronous operation
(SynOp) where the links at a node are all transmitting (SynTx),
or all receiving (SynRx). In 2P, each node in the network
simply switches between these two phases. When a node
is in SynTx, its neighbours are in SynRx, and vice-versa.
Further, when a node switches from SynRx to SynTx, its
neighbours switch from SynTx to SynRx, and vice-versa. This
is illustrated in a simple example in Fig. 2 for a 4-node
topology. Transmissions are shown above the time-line and
receptions are shown below the time-line for the four links in
the topology.

Fig. 2. 2P Illustration

2P achieves maximal efficiency by operating each link in
one direction or another at all times. It effectively makes the
half-duplex wireless point-to-point link behave like a wired
link, by eliminating all contention. Reference [8] also de-
scribes how 2P can operate without tight time synchronization.
This detail is not important for our discussion, and we skip
this here.

For the purposes of the rest of our discussion, we note the
following. First, 2P operation requires that the topology be
bipartite. Next, in 2P, the capacity of a link is divided across
the two directions of a link. 2P itself is agnostic with respect
to how the apportioning happens, albeit with the following
conditions. The outgoing links from a node all have the same

capacity, say a fraction f of the total capacity of the link. The
incoming links all have the same capacity, and it is 1− f .

III. OVERALL SYSTEM DESIGN

Our design combines the 2P MAC protocol and a channel
allocation scheme. We now present the system design and the
rationale behind our approach.

2P operation in a bipartite graph (with all links using the
same channel) is illustrated in Fig. 3. (V1, V2) is the bipartition
of the nodes. We alternate between scheduling traffic along
edges in the direction V1 → V2 for a fraction f of the time,
and in the direction V1 ← V2 for a fraction 1− f of the time.

V1 V21−f

f

Fig. 3. Two-phase scheduling in a bipartite graph, or in a “channel subgraph”

Now, 802.11b/g defines at least 11 channels, as depicted in
Fig. 4. Of these, at least three are completely non-overlapping
(channels 1, 6, and 11). Now, the issue of medium contention
arises only when we are using the same channel or overlapping
channels. An important observation in our design is that if two
links are allocated independent (non-overlapping) channels,
they can be scheduled independent of one another.

Fig. 4. 802.11 channels: schematic

For operation, each of the links in the network must be
assigned a particular channel. The pair of transceivers for a
particular link are tuned to the same channel for transmission
in either direction (i.e., there is no directionality in channel
assignment). And for our purposes, we consider the three
mutually non-overlapping channels 1, 6, and 11. It may be
possible to squeeze a fourth channel as explained in [9].
However, we reserve this for local 802.11b/g access at a node
(e.g. local access within a village).

We combine channel allocation with 2P transmission
scheduling as follows. We define a channel subgraph to be
a maximally connected subgraph (of the original network
graph) where all the edges are allocated the same channel.
A particular channel allocation for the links in the network
graph results in a partitioning of the links (or equivalently
edges) into various channel subgraphs. An example is shown

in Fig. 5. The different channel subgraphs are marked with
different line patterns and their channel allocations are shown
alongside. Note that two edges allocated the same channel
need not be in the same channel subgraph – they may be
separated by links of other channels.

6

1

1

11

1 11

6
1

6 6

Fig. 5. Channel subgraphs: an example

Based on this definition, we observe that we only need
to worry about transmission scheduling within channel sub-
graphs. Scheduling across channel subgraphs can be indepen-
dent of each other.

Combining the observations above, even if the given net-
work graph is not bipartite, we can break it up into smaller
channel subgraphs that are bipartite. And the 2P MAC protocol
is possible in the entire graph if we can allocate channels to
the original network graph such that all the channel subgraphs
are bipartite.

Define a channel allocation that results in bipartite (BP)
channel subgraphs to be a BP-proper channel allocation.
We also call this a BP-proper edge-colouring since channel
allocation is essentially graph edge-colouring (we use the
terms channel-allocation and edge-colouring interchangeably).
Our example in Fig. 5 is not a BP-proper channel allocation,
although a BP-proper 3-edge-colouring does exist for the
graph. The question now is whether a given original network
graph has a BP-proper 3-edge-colouring; we consider three
colours since we have three non-overlapping channels in
802.11.

Clearly, not all graphs have a BP-proper 3-edge-colouring
(K9, a complete graph on 9 nodes, is an example1). Instead of
trying to characterize the set of graphs that have a BP-proper
3-edge-colouring, we focus on a simple class of graphs that
do have this property. In our design, we choose this class to be
the set of graphs for which a proper 6-edge-colouring exists.
(A proper edge-colouring is one in which any pair of adjacent
edges have different colours).

The reason behind this design decision is that if a graph is
6-edge-colourable, then it has a BP-proper 3-edge-colouring.
We give a constructive proof for this. A simple algorithm to
arrive at a BP-proper 3-edge-colouring given a proper 6-edge-
colourable is as follows. First colour the edges with C0, C1,
C2, C3, C4, and C5. Next, merge the colours in pairs, say

1To see this, K3 does not have a BP-proper 1-edge-colouring. Hence K5

does not have a BP-proper 2-edge colouring. Suppose it does, then consider
the bipartition into (V1, V2) produced by the edges of the first colour. At
least one of the partitions must have three nodes, and hence the K3 between
them must be coloured the second colour, which is a contradiction. Arguing
similarly, K9 does not have a BP-proper 3-edge-colouring.

C0&C3, C1&C4, and C2&C5, resulting in a 3-edge-colouring.
This 3-edge-colouring is a BP-proper colouring. In fact, each
channel (or colour) subgraph is either a path or an even-cycle,
and in either case bipartite. This is because, in the edges of
each channel subgraph, the merged colours Ci and Ci+3 (i =
0, 1, or 2) must alternate in the original 6-edge-colouring of
the graph.

We consider an even restricted class of network graphs to
ensure that it is 6-edge-colourable. We consider graphs with
∆ ≤ 5, where ∆ is the maximum node degree in the graph.
By Vizing’s theorem [10], a graph with ∆ ≤ 5 definitely has
a proper 6-edge-colouring.

The design decision of choosing this constraint is driven
by the following reason. With this constraint, there is a
known algorithmic mechanism to arrive at a BP-proper 3-
edge colouring. This consists of two steps: (1) proper 6-edge-
colouring the graph using Vizing’s algorithm [10], and (2)
merging colours in pairs, as described above, to result in a
BP-proper 3-edge-colouring.

We believe that the constraint of ∆ ≤ 5 is not restrictive in
our setting. Since we are working in a mesh network setting, it
is unlikely that a node will have degree over 5. In fact, a degree
of 2 or 3 at a node is expected to be the common case. This
is sufficient to create a useful mesh network since the nodes
are spread out geographically. It is only for nodes close to or
at the landline access points are we likely to have relatively
high connectivity and thus higher node degrees. Hence we
make the simplifying assumption that ∆ ≤ 5 for the network
graph. This assumption buys us a simple, efficient scheduling
mechanism based on 2P operating throughout the network.
Given this, future 802.11 mesh networks can be constructed
under this (rather unrestrictive) constraint.

So far we have discussed a channel allocation mechanism
in relation to the 2P MAC scheme. We now consider channel
allocation in combination with link capacities.

IV. CHANNEL ALLOCATION

In the long-distance 802.11b network, suppose that we
engineer the power levels to achieve 11Mbps on all the
links. This 11Mbps represents the raw bandwidth that can be
achieved in both the directions combined. Now, in a wired ISP
network, the various links are provisioned (incrementally) to
suit the expected traffic on them. However, there is an upper
bound (11Mbps for 802.11b) on the achievable link capacity
for our 802.11 network operator. Even this 11Mbps has to be
shared between either direction.

Now, under the scheduling and channel allocation scheme
described in the previous section, it is straightforward to
achieve 5.5Mbps (half the 11Mbps raw bandwidth) for all the
links in each direction. However, since one of the intended uses
of the 802.11 mesh network is a wireless access network, there
will likely be asymmetry in traffic in different directions. For
instance, traffic to a village node (e.g., HTTP traffic) may be
significantly higher than traffic from it. Similarly, traffic in the
direction towards a landline node may be lower than the traffic
from it. This motivates us to consider a model where we give

the network operator the flexibility of achieving a particular
split of the total 11Mbps for either direction. The operator can
thus specify a desired fraction (DF) f of the 11Mbps for one
particular direction and the remaining fraction 1 − f for the
other direction of the link.

Under the above definition, there is directionality associated
with the specification of DF for an edge. If an edge between
nodes v1 and v2 has a DF f in the direction v1 → v2, it has
a DF 1 − f in the direction v1 ← v2. Hence for an edge,
exactly one of DF (v1 → v2) and DF (v1 ← v2) needs to be
specified, and the other is computed accordingly.

Now, channel allocation and link capacities are closely
related as follows. Consider a particular channel allocation
as described in the previous section, and a channel subgraph
SG under this allocation. Let (V1, V2) be the bipartition of
SG, as in Fig. 3. Suppose the set of edges in SG is SE =
{e1, e2, ...ek}. Represent the edge ei in the direction V1 → V2

as −→ei and in the direction V1 ← V2 as ←−ei . We now observe
that in a two-phase transmission schedule, the fraction of time
for which all −→ei ’s are scheduled is the same, say f . And the
fraction of time for which all←−ei ’s are scheduled is thus 1−f .

We term f to be the achieved fraction (AF) for each of the
−→ei ’s. The achieved fraction for the ←−ei ’s is 1 − f . Of course,
one has the freedom to choose the f in the above example.
However, unless the channel subgraph is such that all the −→ei ’s
have the same DF, for any choice of f for the subgraph, some
edges will have AF �= DF . Note that for an edge −→ei if AF >
DF then for←−ei , AF < DF . That is, in one direction, the edge
has achieved link capacity smaller than the desired value. We
term |AF −DF | to be the mismatch for an edge.

Intuitively, we would like to minimize the mismatch be-
tween AF and DF. Suppose that we are able to come up with
a channel allocation such that for each channel subgraph, the
desired fractions of all −→ei ’s are the same, say f1. We can then
schedule traffic in V1 → V2 for a fraction f1 of the time,
and there would be no mismatch between the DF and AF
of the edges. We call this a zero-mismatch channel allocation
(ZMCA). It groups edges into various channel subgraphs such
that all the −→ei ’s are the same.

The question now is whether such a channel allocation is
possible. We also term the problem of determining if a graph
has a zero-mismatch channel allocation as ZMCA. Of course
we are interested in a 3-channel allocation and hence consider
ZMCA with three edge colours.

NP-Completeness of ZMCA: We show that ZMCA is NP-
Complete, even when we restrict: (a) the graph to have ∆ ≤ 4,
and (b) the desired fractions to be chosen from a set of
only five distinct values, with four of these being two pairs
of (f, 1 − f). Hence, the general problem without these
restrictions is also NP-Complete. We show that ZMCA is
NP-complete by reducing an arbitrary instance of 3SAT (the
satisfiability problem with at most three literals per clause)
to an instance of ZMCA. (ZMCA is clearly in NP). Our
proof mimics that in [11], where it is shown that the problem
of determining the edge-chromatic number of a three-regular
graph is NP-Complete. We outline the proof below, and refer

the reader to [11] for further details.
Outline of the Proof: We now prove that ZMCA as defined

in Sec. IV is NP-Complete. Given an instance of 3SAT, we
construct an instance of ZMCA, with the graph having ∆ ≤ 4,
and choosing DFs from a set of five distinct values. For ease of
exposition, say we choose DFs from the set {1

4 , 1
3 , 1

2 , 2
3 , 3

4}.
Our proof mimics that in [11] by constructing the inverting
component, the replicating component, and the clause testing
component. In the figures showing the various components,
the edges are marked in one of the directions. This direction
corresponds to the one that has the smaller DF (among f and
1−f). The edges with DF=1

2 are not given any direction. The
edges have various thicknesses corresponding to their DFs.
The legend describes this notation.

Like in [11], a “true” value is represented by two edges
having the same colour, and a “false” value by them having
different colours. And like in [11], the construction uses
inverting components, replicating components, and clause-
testing components. We now show the construction of these
components in our context.

g1

Symbolic representation

DF=1/4

DF=1/2
DF=1/3

Input edge 1

Input edge 2

Main output 1

Main output 2

Auxiliary output

Fig. 6. Inverting component: version-1

Fig. 6 shows an inverting component, labeled as version-
1, as explained below. Under any zero-mismatch 3-colouring
the component behaves as an inverting component. To see
this, observe that two adjacent edges can be given the same
colour only if they have the same desired fraction in the same
direction away from their common node. We leave it to the
reader to convince himself/herself that under all possible BP-
proper 3-colourings, this behaves as an inverting component.

As in [11], this component has two “input” edges, two
“main output” edges, and an “auxiliary output” edge. This
inverting component behaves almost the same as that in [11].
One difference is that when the input to the inverting com-
ponent is “true” (the two input edges coloured the same), say
C0, this inverting component has the property that the auxiliary
output edge is also forced to be C0. In [11], there is a flexibility
that the auxiliary edge can be any of C0, C1, or C2 in such
a scenario. It turns out that this flexibility is required for the
clause-testing component. This is the reason why we labeled
this inverting component as version-1. An inverting component
with the required flexibility is created easily by concatenating
five of the version-1 components as shown in Fig. 7.

The replicating component is constructed from several in-

g1
g1 g1 g1 g1

Symbolic representation

g

Fig. 7. Inverting component

verting components just as in [11]. However, for this to work,
we need to observe that in our inverting component, the
auxiliary output can be directed either way (i.e. its DF can
be 1/4 or 3/4) – the behaviour of the inverting component
remains the same irrespective.

The clause testing component construction is also similar to
that in [11]. We however need to be careful about the choice
of DFs in our construction. This is shown in Fig. 8.

g g

g
DF=1/4
DF=1/3

Fig. 8. Clause testing component

With such a construction, the original 3SAT instance is
satisfiable if and only if the resulting construction has a
ZMCA. Note that in our construction, the maximum node
degree is 4.

V. HEURISTICS FOR OPTIMAL CHANNEL ALLOCATION

We would ideally like to achieve zero-mismatch channel
allocation (ZMCA) for a given graph. But a ZMCA may
not even exist for the graph and the given set of DFs for
the edges. Given this, we try to allocate channels such that
the −→ei ’s within each subgraph have the same DF “as far as
possible”. In more precise terms, we consider the additive
metric of the sum of all mismatches in the graph under a
channel allocation. We term the problem of finding a channel
allocation that minimizes this metric as the minimum-mismatch
channel allocation (MMCA) problem. Given that ZMCA is

NP-Complete, the corresponding optimization version MMCA
is NP-hard. We now explore heuristics for MMCA under
the overall 2-step scheme (step-1: Vizing colouring, followed
by step-2: colour merging in pairs) for finding a BP-proper
channel allocation.

We also have a third step after the BP-proper channel
allocation. This is the assignment of the fraction f to each
channel subgraph, as shown earlier in Fig. 3. In ZMCA, this
step was trivial since all we had to check was if all the −→ei ’s
had the same DF f1, and if so assign the −→ei ’s an AF of f1. In
MMCA too, this step is straightforward as we explain below.

Suppose the −→ei ’s (i = 1..k) of a channel subgraph have DFs
{0 ≤ f1 ≤ f2... ≤ fk ≤ 1}. The fraction assignment f̂ that
minimizes the cost in the subgraph C =

∑
i=1..k |f − fi| has

to be one of the fi’s. This is because C is piece-wise linear
in f in [0, 1] – i.e., linear in each of [0, f1], [f1, f2], ...[fk, 1].
If f̂ is in [0, f1] it has to be f1, and if it is in [fk, 1], it has
to be fk. If it lies in [fi, fi+1], then it has to be one of fi or
fi+1.

We can thus find the f for the channel subgraph to be
the fi that minimizes C as above. The assignment of f for
each subgraph can be performed independently, and this third
step thus gives the AFs for the edges under a BP-proper
3-edge-colouring. We have the corresponding mismatch cost
associated with the channel allocation.

For our heuristics, we consider the freedom offered to us
in the first and second steps. In the second step of colour
merging, the freedom we have is that we can merge any
pairs of the six colours C0 − C5. We subsume this freedom
in our first step of 6-edge-colouring as follows. We decide
the colours that are going to be merged, say Ci & Ci+3

(i = 0, 1, 2), before we begin the 6-colouring (i.e. we restrict
our freedom in the second step). However, we consider a swap
of Ci with Cj , i �= j, in all edges of the graph (after the 6-
edge-colouring) to result in a different 6-edge-colouring. This
effectively compensates for the fact that we do not consider
all possible cases of colour merging. As an example, let us see
why we do not need to consider the merging of say colours
C0&C4. Such a case would be similar to the merging of
C0&C3, after a swap of C3 and C4 in a 6-edge-colouring. We
thus consider heuristics only in the first step: 6-edge-colouring
using Vizing’s algorithm.

Vizing’s algorithm works as follows. It colours edges one
after another, in each stage choosing a colour that is absent (so
far) at either end-point v1 and v2 of the chosen edge e. If no
such common unused colour between v1 and v2 is found, there
is a simple recolouring process that is guaranteed to terminate.
We use this Vizing’s algorithm with the small modification that
we always use 6 colours, even if the graph were colourable
with less colours.

We consider two hooks in the Vizing algorithm for heuris-
tics: (1) the choice of colour for an edge, when there is
freedom to do so, and (2) the order in which edges are
coloured. We explore heuristics based on these choices. We
now present our evaluation methodology (Sec. V-A), followed
by the heuristics that use the above two hooks (Sec. V-B& V-

C). We then present a local search heuristic in Sec. V-D that
acts on top of the above heuristics.

A. Evaluation methodology for heuristics

We study the effectiveness of our heuristics by applying
them to randomly generated graphs that are constructed to
resemble expected long-distance 802.11 WiFi networks.

We first generate the nodes at random locations on a rectan-
gular area (we choose 100km X 70.7km – 70.7 is 100/sqrt(2)).
The number of nodes is a parameter in this procedure. For each
node, we compute its “neighbouring density” as the number
of nodes within a rectangle 40km X 28.3 km (2

5 ’ths of the
overall dimensions). This roughly captures how close a node
is to other nodes. Proceeding in order of increasing density
value of the nodes, we designate a desired node-degree of 1
for the first 15% of nodes, node-degree of 2 for the next 35%,
3 for the next 35%, 4 for the next 10%, and 5 for the next 5%.
The percentage values chosen above are meant to capture a
realistic 802.11 long-distance network – majority of the nodes
with degree 2 or 3, and some with degree 1, 4, or 5.

We next form a spanning tree T among the nodes. The
purpose of this step is to ensure that we end up with a
connected graph. We start with an empty set T and at each
stage choose an edge e between T and V − T such that e
had the least physical distance among all such possibilities.
We then add e to T , and repeat the process until T is a
spanning tree. In the final stage, we add more edges to the
tree T to result in a graph G. We start with nodes that are
have a desired node-degree of 2 (since with the spanning tree
all nodes have at least degree 1), and then choose nodes with
desired node-degree 3, and so on. For each node, we satisfy
its desired degree by choosing among its closest neighbours.
The resulting graph may have a higher degree for a few nodes
than originally desired. We however ensure that ∆ ≤ 5.

After generating the graph, we also specify randomly chosen
desired fractions (DFs) for each edge. The DFs are chosen
from the set { 1

4 , 1
3 , 1

2 , 2
3 , 3

4}. This set allows the network
operator reasonable flexibility for choosing the desired link
capacities.

B. Heuristics for colour choice

There are two heuristics we consider for choice of colour
while colouring an edge.

Greedy-Col: This first heuristic is a simple, greedy ap-
proach. While colouring an edge e with end-points v1 and
v2, suppose that we have the freedom to choose from a set of
colours (each unused so far at both v1 and v2). For each colour
possible for e, we consider the subset SE of edges coloured so
far (including e). We then perform colour merging in SE and
find the cost of the channel subgraph that contains e. We then
simply choose the colour that produces the minimum such
cost. Thus at each stage of the Vizing colouring, we greedily
try to pick a colour that would add the minimum mismatch
cost to the graph.

Match-DF: Recall that in a ZMCA all the −→ei ’s in a subgraph
have the same DF. This heuristic, Match-DF, explicitly tries to

achieve this. Suppose we merge colours Ci and Ci+3 (i = 0, 1,
or 2, as in Sec. III) after the 6-colouring, we define Ci and
Ci+3 to be counterpart colours of each other. While colouring
edge e between nodes v1 and v2, we give preference to a
colour such that: (a) it is among the Greedy-Col colours as
in the previous heuristic, and additionally (b) its counterpart
colour is already among the set of coloured edges at v1 and/or
v2, and importantly (c) the edge(s) with the counterpart colour
at v1 and/or v2 have the same DF as −→e or ←−e , considered in
the appropriate direction. (If no colours satisfying (b) and (c)
exist, the fall-back would be Greedy-Col).

To explain this with an illustrative example, suppose e is
directed −→e in the direction v1 → v2, and v1 has an already
coloured edge −→e1 in the direction v1 → v3. If −→e1 has the same
DF as −→e , then the counterpart colour of e1 is preferred for
colouring e. In doing such matching, we prefer colours for
which we are able to match at both end points v1 and v2

over colours for which a match happens on only one of the
end-points.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

C
os

t

Graph number

No-Heu
Greedy-Col

Match-DF

Fig. 9. Performance of Greedy-Col and Match-DF

Performance of Greedy-Col and Match-DF: To compare
the performance of these heuristics, we generate 100 random
graphs, each with 50 nodes, as described earlier. A network
with 50 nodes represents a medium-sized 802.11 rural net-
work. Fig. 9 compares the mismatch cost achieved in the three
cases of comparison. The case without use of any heuristics is
labeled “No-Heu”. The 100 random graphs are sorted in the
order of their costs with the Greedy-Col heuristic – this makes
a visual comparison easier. We clearly see that the Greedy-Col
heuristic performs significantly better than the No-Hue case.
And the use of Match-DF brings in further improvement in
most cases. In some cases, Match-DF has higher cost than
Greedy-Col, since after all Match-DF is a locally applied
heuristic and can lose out globally sometimes. The costs for
the three cases averaged across the 100 graphs are: 10.58 (No-
Heu), 6.38 (Greedy-Col), and 5.32 (Match-DF).

C. Heuristics for edge ordering

While the previous subsection described various heuristics
for colour choice, we now explore heuristics for edge ordering.

We explore two different heuristics for edge ordering. Since we
found above that the performance of the Match-DF heuristic
was good, both these heuristics try to help the Match-DF
heuristic in different ways.

Sum-Diffs: This heuristic is based on the intuition that some
edges are “more difficult” to colour than others. It tries to
colour these first, when there is maximum flexibility in terms
of choice of colours (there is less flexibility in choice of
colours as more and more edges are coloured). To capture a
notion of “more difficult” to colour, we define a metric Sum-
Diffs(e) for each edge e. This is the sum of the (absolute)
differences between the DFs of e and each of its neighbours.
Intuitively, the more this metric, the more difficult it is to
match up DFs with neighbours in the Match-DF heuristic,
while colouring e. We thus order the edges in decreasing order
of this metric.

BFS: The second edge ordering heuristic is based on a
Breadth-First-Search (BFS) ordering of the edges. The BFS
ordering is obtained simply by performing a BFS traversal
starting with an arbitrarily chosen node. During the traversal,
the order in which the edges at a particular node are chosen
is also arbitrary. In such a BFS ordering of edges, when it
is turn for an edge to be coloured, most likely it will have
some of its neighbours coloured, but not all. The fact that
some neighbours are coloured helps in the application of the
Match-DF heuristic, and the fact that some neighbours are not
coloured helps in flexibility of colour choice.

Performance of Sum-Diffs and BFS: The edge ordering
heuristics are applied in addition to the Match-DF heuristic for
colour choice. We apply them to the same set of 100 random
graphs as earlier, and for each graph, we find the additional
improvement due to an edge ordering heuristic, as compared
to using no edge ordering (with only the Match-DF heuristic).
Fig. 10 shows these values. The graphs are sorted here in
increasing order of their cost using the Match-DF heuristic.
Since the edge-ordering heuristics are applied in addition to
the Match-DF heuristic, we append a “Match-DF” to their
labels in the plot.

We can see from the plot that there are a significant
number of cases where the edge-ordering actually ends up
performing poorer than just the Match-DF heuristic (negative
improvement). However, for graphs with higher cost with the
Match-DF heuristic (towards the right-hand side of the plot),
we find that either of the edge orderings is able to show
improvement over using just the Match-DF heuristic. The costs
after applying the different edge ordering heuristics averaged
over the 100 graphs are: 4.78 (Sum-Diffs::Match-DF), and
4.47 (BFS::Match-DF) – recall that the average cost was 5.32
for Match-DF for the same set of graphs.

D. Local search heuristic

While the above heuristics show significant improvement
over No-Heu (a factor of 2 or more), we do not yet have
an idea of how well these perform in comparison to what is
optimally possible. In order to see this, we ran an (exponential)

-6

-4

-2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100

C
os

t i
m

pr
ov

em
en

t o
ve

r
M

at
ch

-D
F

Graph number

Sum-Diffs+Match-DF
BFS+Match-DF

Fig. 10. Performance of Sum-Diffs and BFS

exhaustive search algorithm enumerating all possible colour-
ings. We used smaller graphs, with 20 nodes each for this
purpose – we could not find the optimal cost of graphs much
larger than this (within reasonable amount of time) due to the
exponential nature of the exhaustive search. We considered 20
such graphs and found the average costs of the various cases to
be: 3.72 (No-Heu), 2.03 (Greedy-Col), 1.55 (Match-DF), 1.31
(Sum-Diffs::Match-DF), 1.40 (BFS::Match-DF), and only 0.43
for the optimal case. Hence the above heuristics perform worse
than the optimal possible colouring.

We visually compared the colouring produced by the ex-
haustive optimal search algorithm with the one produced by
our heuristics (by programmatically generating an image file).
We observed that the colouring matched for large parts of the
graph, but were different in small parts, where the mismatch
costs figured for the case of our heuristics. We however did
not find any standard pattern in which our heuristic colouring
could be altered to be made closer to optimal. This led us to
try the following local search-based optimization heuristic.

After applying the previously described heuristics, we ob-
tain a channel allocation. Some channel subgraphs in the
resulting 3-edge-colouring have edges with mismatch between
DF and AF. We now try to recolour these channel subgraphs,
and the edges nearby, by means of an exhaustive enumeration
of colouring possibilities. We however do not want to consider
recolouring all these subgraphs at the same time, since that
would increase the cost of exhaustive enumeration exponen-
tially. Hence we consider them one after another. We proceed
as follows.

Denote the channel subgraphs (before any recolouring, but
after the initial colouring) as S1, S2, ...Sl, in decreasing order
of mismatch cost. In the first step, we simply uncolour all
the edges of S1, and also all the neighbouring edges to
this subgraph. We then perform an exhaustive search on the
possible colourings of just this uncoloured part.

In a subsequent steps i, i = 2..l of this optimization
heuristic, we attempt to do similar recolouring for the subgraph
Si. But due to the recolouring done in previous stages, Si may
have been altered from what it was in the original graph. Hence
we pick an edge ei (arbitrarily) from each Si before step-1. In

steps i ≥ 2, we simply consider the channel subgraph (after
colour merge, in the current colouring), that has edge ei and
check if it has non-zero cost. If so, we attempt to improve the
colouring by a recolouring process like in the first step.

While the part of the graph over which we perform local
exhaustive search at each step could theoretically include even
all the edges of the graph in the worst case, in practice it
has only about 10-20 edges – exhaustive search on this takes
at most a few seconds in implementation. The optimization
phase can in fact place a limit on the number of edges which
are uncoloured and recoloured – over which exhaustive search
is performed – we chose this limit to be 16 edges in our
implementation.

We term this final heuristic as L-Search since it is based on
several local exhaustive searches.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16 18 20

C
os

t

Graph number

Min-No-L-Search
Min-L-Search

OPT

Fig. 11. Performance of L-Search

Performance of L-Search: Note that such a search is for
optimization and is implemented on top of one of the heuris-
tics presented earlier (to get the initial colouring). Fig. 11
presents a comparison of the performance of L-Search with
the exhaustive optimal search (OPT) over the entire graph. We
run L-Search on three different 6-edge-colourings – produced
by Match-DF, Sum-Diffs::Match-DF, and BFS::Match-DF. We
then choose the one that produces the minimum cost. This is
labeled Min-L-Search in Fig. 11. We also show the minimum
of the costs of the three possible colourings mentioned above,
without the use of L-Search. This is labeled as Min-No-L-
Search in the plot. As the plot shows, the Min-L-Search is
almost always the same as OPT. The costs averaged across the
20 graphs for the various cases are: 1.2 (Min-No-L-Search),
0.47 (L-Search), and 0.43 (OPT).

We could not compare the performance of L-Search with
that of OPT for the graphs with 50 nodes since the exhaustive
search OPT does not complete within reasonable time on these
graphs. However, L-Search shows significant improvement on
top of the other heuristics even in the 50-node case. The cost
averaged across the same hundred 50-node graphs as in the
previous subsections is 1.51 for Min-L-Search, while it was
3.84 for Min-No-L-Search.

VI. RELATED WORK

We now discuss prior work related to our research.
We have considered a combination of channel allocation and

STDMA scheduling (2P) for controlling medium access in our
802.11 mesh network with point-to- point links. Channel allo-
cation and frequency reuse is a well-studied issue in cellular
networks [12]. However, the problem in cellular networks is
quite different than in our context. While in cellular networks
channel allocation is modeled as a node-colouring problem, in
our setting, we have modeled it as a BP-proper edge-colouring
problem. Our formulation of the minimum-mismatch channel
allocation problem is also unique to our setting as compared
to cellular networks.

STDMA has been considered by researchers for medium
sharing in packet radio networks. Both link scheduling [13],
[14], where individual graph links are scheduled, as well
as broadcast scheduling [15], [16], [17], [18] where graph
nodes are scheduled, have been considered. In these, the goal
is to come up with a transmission schedule of time slots
such that all links/nodes are scheduled within a minimum
number of time-slots (i.e., with minimum schedule length).
This problem is NP-complete for both the link and node
scheduling variants [19], [15] and efforts have focused on other
issues such as a distributed implementation [13], [15], [16],
[17], [18]. Researchers have also considered restricted classes
of graphs [19], [20] since the problems are NP-Complete on
general graphs.

Another dimension that has been considered is scheduling to
adapt to current/expected traffic patterns [14], [21], [22]. It is
interesting to observe that bipartite graphs also figure in [21],
[22], albeit in a context different from ours – in [21], [22]
it is shown that non-bipartite graphs lead to significantly less
efficient solutions. This is intuitive since scheduling around an
odd cycle always leads to a conflict.

While most of the earlier work has considered only omni-
directional antennas, more recent work has also considered
directional antennas [23]. Link scheduling has also been con-
sidered specifically in the context of Bluetooth scatternets [22].
With directional antennas as well as in Bluetooth scatternets,
more “reuse” is possible in STDMA scheduling, since there
is lesser interference and many more transmissions can go in
parallel.

Our work differs from past work on scheduling in two main
aspects. First, synchronous operation (SynOp) at a node is
possible in our setting. This is because (a) we use directional
antennae, and (b) we know the exact locations of the nodes so
the power levels of the links can be engineered with a careful
link-budget analysis to reject the interfering transmission [8].

The relatively recent work on a unified framework for
(T/F/C)DMA channel allocation [24] allows such a flexibility
in theory. In [24], a generic algorithm is proposed for schedul-
ing under a flexible set of constraints. However, [24] does
not evaluate the performance of the generic algorithm under
the flexibilities we have considered. Further, the following
difference also holds with respect to [24].

The second main difference is that past work has considered
scheduling in isolation and applies it to the entire network
graph. However, we consider channel allocation in combina-
tion with scheduling. This allows us the flexibility of breaking
up the network graph into small channel subgraphs, each of
which is bipartite. This breakup in turn permits a simple
and efficient two-phase scheduling in each of the channel
subgraphs. Such a design is unique to our work. Another
unique contribution of our work is our formulation of the
minimum-mismatch channel allocation problem in terms of
desired and achieved link capacities, and our heuristics to solve
this.

VII. DISCUSSION AND FUTURE WORK

We now elaborate on a few points of discussion related to
our design.

In our system, the channel allocations and schedules can be
pre-computed centrally and passed on to all nodes. Another
implementation aspect in our scheme is the granularity of
scheduling. Using a granularity of one or more packet trans-
mission lengths is feasible. This granularity must also be taken
into account while the network operator species the DF values.

There are several dimensions for future research that arise
out of our work. First, in our formulation of MMCA, we
have considered mismatches between AF and DF with equal
weightage for all links. However, in a real network, some links
are more important than others. Also, it may be alright to
achieve a capacity less than desired in a particular direction,
but not in the other. Such considerations are natural extensions
to our work.

While in our work we have assumed that the desired
fractions are handed to us, guidelines for arriving at these
values are required. Such guidelines may consider how routing
is done in the mesh network, and where landline nodes are
placed, to determine expected traffic volume on the links.
Further, the DFs may be varied dynamically based on time-of-
day dependent traffic patterns, or even more dynamic aspects
such as link/node failures. The dynamic variation of DFs and
dynamic channel allocation is a system design aspect that
needs further study.

In our channel allocation algorithm and the heuristics, we
have not paid attention to the angle of separation between two
links. However, for more headroom in the link-budget analysis
in [8], it is desirable if two links assigned the same channel
are as far apart as possible. An algorithm that considers this
aspect in channel allocation requires further exploration. This
issue may also be addressed/alleviated by appropriate topology
formation during rural network construction, by ensuring that
links have enough angular separation. This and other consid-
erations such as resilience to failures, closeness to points of
landline connections, etc. would go into deciding the topology
of a rural network. Topology formation is also an area for
further study.

VIII. CONCLUSIONS

802.11 mesh networks are gaining popularity due to the
easy and low-cost availability of the technology. In this paper,

we have considered the issue of channel allocation in tandem
with the 2P MAC protocol. We have addressed the important
issue of flexible capacity allocation in mesh networks.

In our network, we have the flexibility of transmitting
to or receiving from multiple directions simultaneously. The
2P MAC protocol fully utilizes this flexibility. We allocate
channels such that we end up with bipartite channel subgraphs.
This allows 2P to operate within each channel subgraph. We
propose a 2-step algorithm to arrive at a BP-proper channel
allocation: Vizing colouring, followed by colour merging. This
works under the constraint ∆ ≤ 5, which is not restrictive for
sparse mesh networks.

To summarize, our contributions are in terms of (a) the
overall system model for dividing a given network topology
into bipartite channel subgraphs, so that 2P operation can
be enabled throughout, (b) formulation of the problem of
zero-mismatch channel allocation (ZMCA) and the minimum-
mismatch channel allocation, (c) proof that ZMCA is NP-
complete and thus MMCA is NP-hard, and finally (d) heuris-
tics for achieving a close-to-optimal channel allocation and
their evaluation.

ACKNOWLEDGMENT

This work was supported by Media Lab Asia (the RuralNet
project: MLA/CS/20050014) and by the Ministry of Human
Resources and Development (project: MHRD/CS/20030332).
We thank Kameswari Chebrolu as well as the anonymous
reviewers for their comments on earlier versions of this paper.

REFERENCES

[1] “IEEE P802.11, The Working Group for Wireless LANs,”
http://grouper.ieee.org/groups/802/11/.

[2] Pravin Bhagwat, Bhaskaran Raman, and Dheeraj Sanghi, “Turning
802.11 Inside-Out,” in HotNets-II, Nov 2003.

[3] Eric Brewer, Michael Demmer, Bowei Du, Kevin Fall, Melissa Ho,
Matthew Kam, Sergiu Nedevschi, Joyojeet Pal, Rabin Patra, and Sonesh
Surana, “The Case for Technology for Developing Regions,” IEEE
Computer, vol. 38, no. 6, pp. 25–38, June 2005.

[4] “Technology and Infrastructure for Emerging Regions,” http://
tier.cs.berkeley.edu/.

[5] “DjurslandS.net: The story of a project to support the weak
IT infrastructure in an low populated area of Denmark,”
http://djurslands.net/biblioteket/international/
djurslands_net_english_presentation.ppt.

[6] “HyperGain HG2424G 2.4 GHz 24 dBi High Performance Reflector
Grid Antenna,” http://www.hyperlinktech.com/web/hg2424g.php.

[7] Bhaskaran Raman and Kameswari Chebrolu, “Revisiting MAC Design
for an 802.11-based Mesh Network,” in HotNets-III, Nov 2004.

[8] Bhaskaran Raman and Kameswari Chebrolu, “Design and Evaluation of
a new MAC Protocol for Long-Distance 802.11 Mesh Networks,” in 11th
Annual International Conference on Mobile Computing and Networking
paper (MOBICOM), Aug/Sep 2005.

[9] M. Burton, “Channel Overlap Calculations for for 802.11b Networks,”
http://www.cirond.com/White Papers/FourPoint.pdf.

[10] J. Misra and D. Gries, “A Constructive Proof of Vizing’s Theorem,”
Information Processing Letters, vol. 31, no. 3, Mar 1992.

[11] I. Holyer, “The NP-Completeness of Edge-Colouring,” SIAM J.
COMPUTING, vol. 10, no. 4, pp. 718–720, Nov 1981.

[12] I. Katzela and M. Naghshineh, “Channel Assignment Schemes for
Cellular Mobile Telecommunications: A Comprehensive Survey,” IEEE
Personal Communications, pp. 10–31, 1996.

[13] I. Chlamtac and S. Lerner, “A link allocation protocol for mobile multi-
hop radio networks,” in Globecom, Dec 1985.

[14] R. Ogier, “A decomposition method for optimal scheduling,” in 24th
Allerton Conference, Oct 1986.

[15] R. Ramaswami and K. K. Parhi, “Distributed scheduling of broadcasts
in a radio network,” in INFOCOM, 1989.

[16] A. Ephremedis and T. Truong, “Distrbuted algorithm for efficient and
interference-free broadcasting in radio networks,” in INFOCOM, 1988.

[17] I. Cidon and M. Sidi, “Distrbuted assignment algorithms for multi-hop
packet-radio networks,” IEEE Transactions on Computers, vol. 38, no.
10, pp. 1353–1361, Oct 1989.

[18] I. Chlamtac and S. Kutten, “A spatial reuse TDMA/FDMA for mobile
multi-hop radio networks,” in INFOCOM, Mar 1985.

[19] S. Ramanathan and E. L. Lloyd, “Scheduling Algorithms for Multi-hop
Radio Networks,” IEEE Transactions on Networking, vol. 1, no. 2, pp.
166–177, Apr 1993.

[20] A. Sen and M. L. Huson, “A New Model for Scheduling Packet Radio
Networks,” in INFOCOM, 1996.

[21] L. Tassiulas and S. Sarkar, “Maxmin Fair Scheduling in Wireless
Networks,” in INFOCOM, 2002.

[22] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz, “Bluetooth
Scatternets: An Enhanced Adaptive Scheduling Scheme,” in INFOCOM,
2002.

[23] M. Sanchez, J. Zander, and T. Giles, “Combined Routing & Scheduling
for Spatial TDMA in Multihop Ad hoc Networks,” in Wireless Personal
Multimedia Communications (WPMC), 2002.

[24] R. Ramanathan, “A Unified Framework and Algorithm for Channel
Assignment in Wireless Networks,” in INFOCOM, 1997, pp. 900–907.

