#### Channel Allocation in 802.11-based Mesh Networks

Bhaskaran Raman Department of CSE, IIT Kanpur India 208016 http://www.cse.iitk.ac.in/users/braman/

> Presentation at Infocom 2006 Barcelona, Spain

#### **Presentation Outline**

- Motivation and Background
  - The 2P MAC protocol
- Channel allocation, channel subgraphs
- Optimal channel allocation
  - NP-completeness
  - Heuristics
- Discussion: P2MP links, further work
- Conclusion

# 802.11 to Bridge the Digital Divide

- Low-cost equipment
- License-free spectrum
- Long-distance (10-100km) links
  - Directional antenna
  - MAC modifications
- Example deployments:
  - www.Djurslands.Net
  - Nepal wireless
  - Ashwini project, A.P., India



Src: http://nepalwireless.net/



The **Ashwini Centre at** Kasipadu, West Godavari, Andhra Pradesh, India

#### **Network Model**



- Point-to-point links
- Multiple interfaces (radios) per node
- One directional antenna per link

# The 2P MAC Protocol

 Two phases: each node switches between SynRx and SynTx



Note: diagram ignores system and propogation delays

- Single channel operation
- Topology has to be bipartite
  - "Design and Evaluation of a new MAC Protocol for Long-Distance 802.11 Mesh Networks", Bhaskaran Raman and Kameswari Chebrolu, Mobicom 2005

#### **2P Scheduling**



Bipartite graph, or a "channel subgraph"

#### **Channel Subgraphs**



802.11b/g have three non-overlapping channels



**Channel subgraph:** maximal subgraph with all links on the same channel

# **BP-proper Channel Allocation**

- BP-proper channel allocation: such that all channel subgraphs are bipartite
- Question: given a graph, does it have a BPproper 3-edge colouring?
- If 6-edge-colourable, provably yes
  - 6-edge colouring using Vizing's approach
  - Merge alternate colours
  - Channel subgraphs will be paths or even cycles
- If graph is 8-vertex-colourable, provably yes
  - Thanks to Sundar Vishwanathan, CSE, IITB

# **Link Capacities**

- Assumption: all links operate at max. rate
- Traffic on links may be asymmetric
- Focus of our work: accommodating this asymmetry
- Model: operator specifies a *desired fraction* (*DF*) of capacity in a particular direction

- Note:  $DF(v_1 \rightarrow v_2) + DF(v_2 \rightarrow v_1) = 1$ 

• The actual fraction of capacity an edge is allocated: *achieved fraction (AF)* 

## Channel Allocation and Link Capacities

Edges in a channel subgraph have the same AF



## Zero-Mismatch Channel-Allocation (ZMCA)

- ZMCA definition:
  - Given a network and edge DFs,
  - BP-proper 3-channel allocation such that:

$$DF(\vec{e}_i) = AF(\vec{e}_i) \forall \text{edges } e_i$$

- That is: all edges  $e_i$  in each channel subgraph have the same  $DF(e_i)$ 

## **NP-Completeness of ZMCA**

- NP-Complete even if:
  - Delta <= 4
  - DFs chosen from {1/4, 1/3, 1/2, 2/3, 3/4}
- Proof outline:
  - Reduce 3SAT to ZMCA
  - Mimics proof of NP-Completeness of optimal edgecolouring problem
    - Ian Holyer, "The NP-Completeness of Edge-Colouring", SIAM J. COMPUTING, vol. 10, no. 4, Nov 1981.
  - Construct inverting, replicating, clause-testing components

# Minimum-Mismatch Channel-Allocation (MMCA)

- MMCA definition: minimize  $\sum_{e_i \in E} \left| DF(e_i) AF(e_i) \right|$
- ZMCA NP-Complete => MMCA NP-hard
- Note: given a channel allocation, minimizing mismatch is trivial
  - Within a channel subgraph with edge DFs  $f_i$ , i=1..k
  - Optimal f is one of  $f_i$ , i=1..k
  - Optimal f for each channel subgraph is determined independently

# **Heuristics for MMCA**

- Steps: 6-edge-colouring, AF assignment
- Approach:
  - Heuristic for edge-colouring, edge-ordering in Vizing's algorithm
  - Get initial set of channel subgraphs
  - Uncolour channel subgraphs with large mismatch
  - Local exhaustive search to colour that subgraph
- Performance close to optimum

#### **Related Work**

- Packet radio network scheduling, bluetooth
  - Single channel of operation
  - Use STDMA scheduling (not 2P)

## Discussion: Point-to-MultiPoint (P2MP) Links



- Ashwini network deployment (partial)
- Each village has a bandwidth regmt.: 384 Kbps
- Specific times known too
- Can use this info to set DFs

## **Discussion: Further Work**

- What if only two channels available?
  - One channel may be required for local coverage
- Practical complications:
  - Inter-link interference & channel assignment
    - Inter-link interference an important factor
  - Inefficiencies in 2P with large channel subgraph size
    - Minimize channel subgraph size

### Conclusion

- 802.11 mesh networks becoming popular
  - We focus on planned networks with long-distance links
  - This work: channel allocation for desired link capacity
- Practical considerations add new dimensions to the problem
  - Experience will tell which direction is important to explore