FRACTEL: A Fresh Perspective on (Rural) Mesh Networks

Kameswari Chebrolu Bhaskaran Raman IIT Kanpur (Currently at IIT Bombay) ACM NSDR 2007, A Workshop in SIGCOMM 2007

Presentation by: Sonesh Surana, U.C.Berkeley

FRACTEL Goals

- Support a variety of applications:
 - HTTP/FTP
 - Voice over IP
 - Video-conferencing based, real-time
- Quality of Service is necessary
- Scalable operation:
 - Deployment for a few hundred nodes in a district

Outline

- FRACTEL problem setting
 - Network architecture
 - Nature of traffic
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
- TDMA implementation challenges
- Conclusion

FRACTEL Network Arch. (1 of 2)

Long-distance links

Few km to tens of km

Antenna types:

- High-gain directional or sector: 17-27dBi
- Cost: \$100 or so
- Mounting, alignment required

Antenna mounting:

 25-50m tall towers: high cost, planned Local-access links

- Few 100 metres

Antenna types:

- Omni-directional or <u>Cantennas</u>: 8-10dBi
- Cost: \$10-15
- Easy mounting, no alignment procedures

Antenna mounting:

 Mounted on buildings, trees, etc. (5-10m max.)

FRACTEL Network Arch. (2 of 2)

Network Expanse:

- 1. District expanse: 20-30km radius
- 2. One point of wired connectivity within each district
- 3. 10-20km long-distance links

1 & 2 & 3 → most districts can be covered within 2 hops of the landline

Nature of Traffic in FRACTEL

- 1. Traffic to/from landline
 - E.g. videoconferencing between landline and villages

2. Traffic between villages and the Internet, via landline

We expect traffic between two villages to be a small fraction

Link Abstr.: DGP, Roofnet, FRACTEL

	Typical link distances	Network architecture	Environm ent	Multipath effects	SNR or RSSI	External interference	Link abstrac tion
Long- distance mesh networks (e.g. DGP)	Up to few tens of kms	High gain directional & sector antennas on tall towers or masts	Rural setting studied in depth	Effect not apparent	Has strong correlation with link quality	Affects links performance	Valid
Rooftop mesh networks (e.g. Roofnet)	Mostly < 500 m	Mostly omni- directional antennas on rooftops	Dense urban setting studied in- depth	Reported as a significant component	Not useful in predicting link quality	Reported as not significant	Not valid
FRACTEL	Mostly < 500 m	Would like to avoid tall towers	Rural, campus, residential	Similar to WiLD links	Similar to WiLD links	Similar to WiLD links	Similar to WiLD links

Outline

- FRACTEL problem setting
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
 - Spatial reuse
 - TDMA in the LDN
 - TDMA in the LACNs
- TDMA implementation challenges
- Conclusion

TDMA in FRACTEL

CSMA/CA inefficient, unpredictable in multi-hop settings

TDMA is an alternative, explored in prior literature

For each link, allocate time-slot, channel: a (ts_i, c_i) tuple

Interfering links cannot have the same (ts_i, c_j) allocation == node colouring in the interference graph

Recent formulations: routing is a variable too

Other inputs: expected traffic pattern, number of radios

→ Complex formulation, solution

Is the nature of the problem different in FRACTEL?

The LDN, and the LACNs at each village are independent of one another (i.e. non-interfering)

Consider the LDN, and each LACN independently

Allocating (ts_i, c_j) in the LDN

Allocating (ts_i, c_j) in the LACNs <u>The idea</u>

C = total capacity in one channel of operation k = number of orthogonal channels LG_i = local gateway at $LACN_i$ C_i = total traffic to/from $LACN_i$, via LG_i T = total number of LACNs

Uniform traffic requirements $\rightarrow C_i = kC/T$ Large *T*, small $k \rightarrow C_i << C \rightarrow O3$

O3: for each LACN, the long-distance link at its local-gateway is the bottleneck

Enough slack for scheduling within each LACN

Allocating (ts_i, c_j) in the LACNs An independent channel for each LACN

At most <u>two channels</u> for long-distance links at <u>hop-1</u> nodes Only <u>one channel</u> for long-distance link at <u>hop-2</u> nodes \rightarrow <u>O4:</u> we have at least one channel entirely free for LACN_i

Time taken for *B* bytes over *h* hops = $h \times B/C$ Time taken for B bytes to arrive over the LDN at $LG_i = B/C_i$ = $T/k \times B/C$ \rightarrow up to T/k hops can be supported *without any spatial reuse* Say, T = 30, $k = 3 \rightarrow 30/3 = 10$ hops can be supported!

Outline

- FRACTEL problem setting
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
 - Spatial reuse
 - TDMA in the LDN
 - TDMA in the LACNs
- TDMA implementation challenges
- Conclusion

TDMA Implementation Challenges

- 1. How to achieve time synchronization, in a potentially large network?
- 2. We need dynamic scheduling:
 - In FRACTEL, traffic patterns will be dynamic
 - Only a subset of nodes may be active at a time
- 3. In each LACN, we need fine granularity scheduling, depending on source/ destination of packet

The four strategies fit in well with one another

Addressing the Challenges (1/2)

Simplifying synchronization:

Recall O4: we have an entire channel of operation for each LACN

 \rightarrow No need to synchronize *LACN*_i with LDN, or with *LACN*_i

Multi-hop connection-oriented link layer:

- How exactly does *LG_i* know when to schedule for *D*?
- Use the notion of traffic flows at the MAC/routing layer
 - Similar to 802.16 connections
 - Can be used to categorize traffic: voice, video, ftp/http
 - Categorization helps in scheduling
- Connection state is maintained at LG_i as well as the landline

Addressing the Challenges (2/2)

Centralized scheduling & synchronization:

- *LG_i* handles scheduling, synchronization in *LACN_i*
- Landline handles scheduling, synchronization in the LDN
 - LDN aware of traffic during flow setup
 - Can handle dynamic scheduling

Centralized approach is valid design choice:

- Fault tolerance is not an issue since anyway we have a tree structure
- Scaling is not a concern too, since we have used hierarchy

Open Technical Issues

- What exactly will be the multi-hop framing mechanism?
 - What will be the overheads?
 - Small frames may be needed for lower delay: overheads for small frames?
- How can we achieve multi-hop synchronization using offthe-shelf 802.11 hardware?
 - Current 802.11 hardware supports single-hop synchronization with minimal error (4 micro-sec)
- How exactly can we schedule each category of traffic?
- Dynamic channel/time-slot allocation:
 - We do not want to disrupt a functional network
 - How to achieve dynamic scheduling with minimal disruption?

Conclusion, Wider Applicability

Conclusion:

- FRACTEL: mesh network deployment in rural settings
 - Several properties warrant a specific consideration rather than a generic approach
- Take-away lesson: consideration of deployment specifics will likely change the nature of the problem

Wider applicability:

- Our discussion has been centered around 802.11b/g
 - 802.11a band has been delicensed recently in India
- Our observations also likely apply to 802.16 networks:
 - Network architecture, pattern of spatial reuse
 - Scheduling in the presence of bottleneck links
 - Use of hierarchy, centralized approach