
FRACTEL: A Fresh Perspective on (Rural) Mesh Networks

Kameswari Chebrolu

Bhaskaran Raman

IIT Kanpur

ACM NSDR 2007, A Workshop in SIGCOMM 2007

FRACTEL Goals

- Support a variety of applications:
 - HTTP/FTP
 - Voice over IP
 - Video-conferencing based, real-time
- Quality of Service is necessary
- Scalable operation:
 - Deployment for a few hundred nodes in a district

Outline

- FRACTEL problem setting
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
- TDMA implementation challenges
- Conclusion

FRACTEL Problem Setting

- 1. Network architecture
 - Long-distance versus local-access links
 - Antenna type
 - Mounting height
 - Expected network expanse
- 2. Nature of traffic

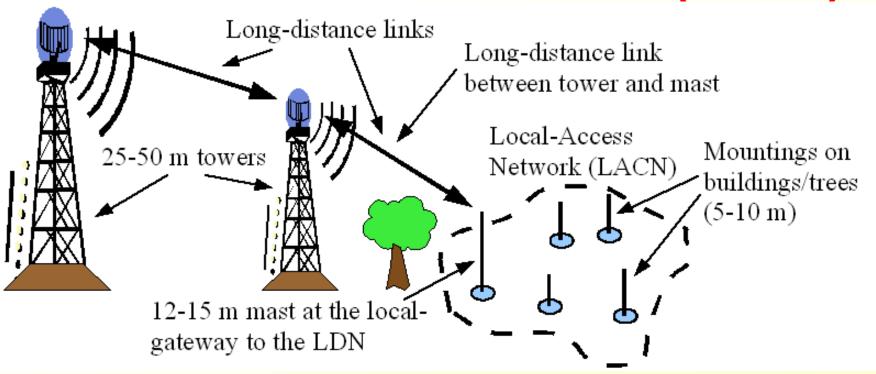
FRACTEL Network Arch. (1 of 3)

Long-distance links

Few km to tens of km

Antenna types:

- High-gain directional antennas: 24-27dBi
 - 8º beam-width
 - P2P links
- Sometimes 17-19dBi sector antennas
 - 30°-90° beam-width
 - P2MP link-set
- Cost: \$100 or so


Local-access links

Few 100 metres

Antenna types:

- Omni-directional antennas: 8dBi
- Or <u>Cantennas</u>: 10dBi
- Cost: \$10-15
- Light-weight: easy mounting
- No alignment procedures

FRACTEL Network Arch. (2 of 3)

Long-distance links

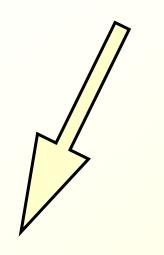
Antenna mounting:

- 25-50m tall towers:
 high cost, planned
- 12-15m masts can be used at one end

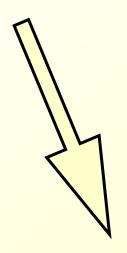
Local-access links

Antenna mounting:

- Mounted on buildings, trees, etc.
- 5-10m at most


FRACTEL Network Arch. (3 of 3)

Network Expanse:


- District expanse: 20-30km radius
- One point of wired connectivity within each district
- 3. 10-20km long-distance links

1+2+3 → most districts can be covered within 2 hops of the landline

Nature of Traffic in FRACTEL

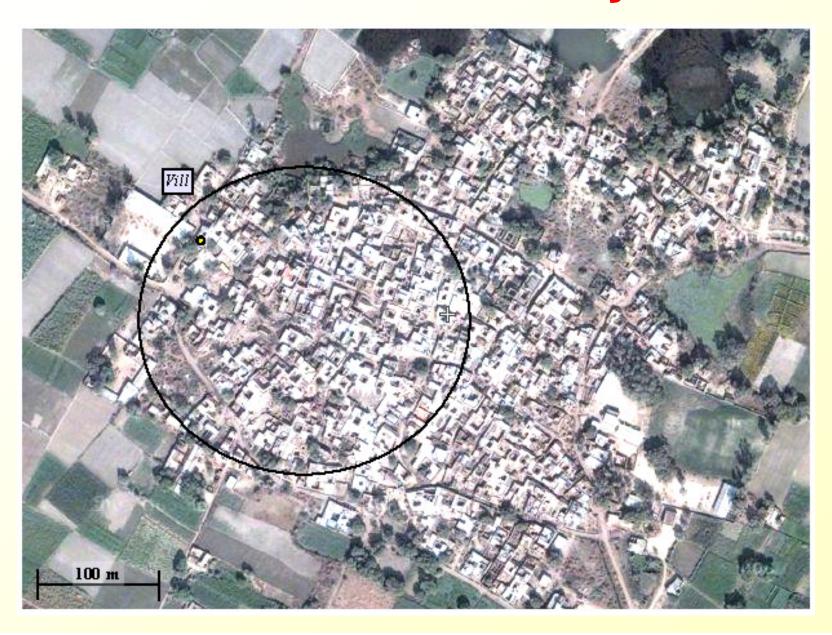
- 1. Traffic to/from landline
 - E.g. videoconferencing between landline and villages

2. Traffic between villages and the Internet, via landline

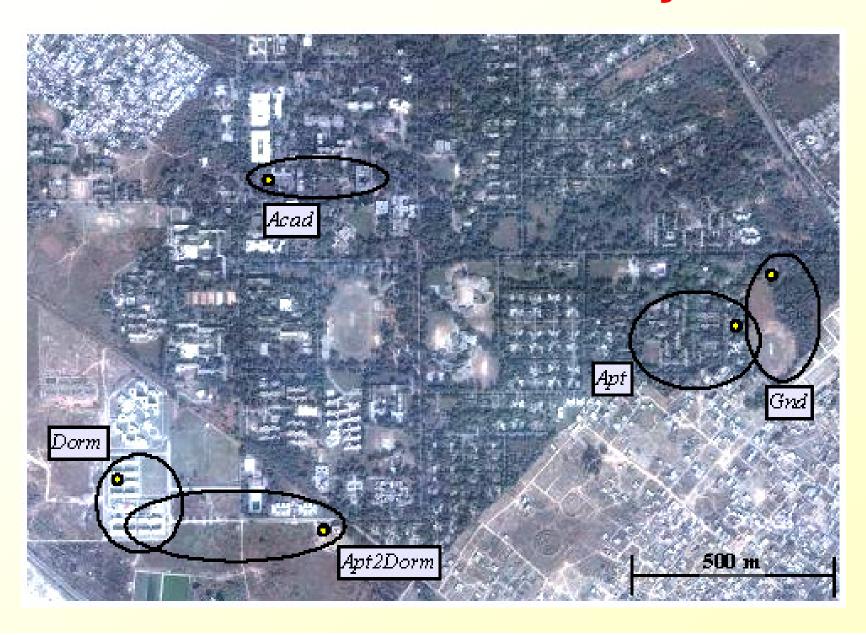
We expect traffic between two villages to be a small fraction

Outline

- FRACTEL problem setting
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
- TDMA implementation challenges
- Conclusion


Link Abstraction: Background

- Link behaviour critical for predictable performance
- Link abstraction:
 - Either link exists or does not
 - That is, 0% packet reception, or ~100%
 - Abstraction holds in wired networks
- Roofnet study:
 - Outdoor WiFi mesh, Boston/Cambridge area
 - Most links have intermediate loss rates, between 0% and 100%
 - No link abstraction!


Link Abstr.: DGP, Roofnet, FRACTEL

	Typical link distances	Network architecture	Environme nt	Multipath effects	SNR or RSSI	External interference	Link abstra ction
Long- distance mesh networks (e.g. DGP)	Up to few tens of kms	High gain directional & sector antennas on tall towers or masts	Rural setting studied in depth	Effect not apparent	Has strong correlation with link quality	Affects links performance	Valid
Rooftop mesh networks (e.g. Roofnet)	Mostly < 500 m	Mostly omnidirectional antennas on rooftops	Dense urban setting studied in- depth	Reported as a significant component	Not useful in predicting link quality	Reported as not significant	Not valid
FRACTEL	Mostly < 500 m	Would like to avoid tall towers	Rural, campus, residential	To be determined	To be determined	To be determined	To be determ ined

FRACTEL Measmt. Study: Amaur

FRACTEL Measmt. Study: IITK

Strong correlation between error rate and RSSI

Intermediate loss rates: due to interference, not multipath

Measurement & Analysis Results

No interference → link abstraction can be made to hold: based on RSSI threshold, variability window

Using links with intermediate loss rates → unstable behaviour

Results contrary to Roofnet

Outline

- FRACTEL problem setting
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
 - Spatial reuse
 - TDMA in the LDN
 - TDMA in the LACNs
- TDMA implementation challenges
- Conclusion

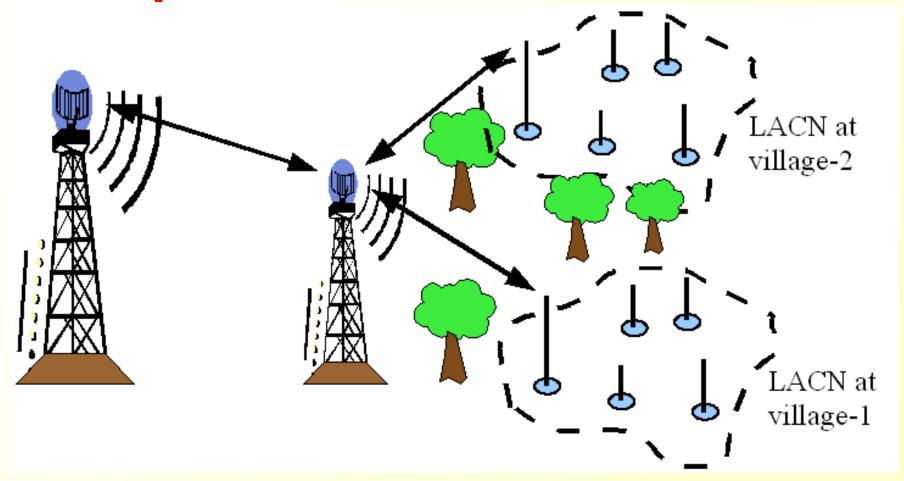
TDMA in FRACTEL

CSMA/CA inefficient, unpredictable in multi-hop settings

TDMA is an alternative, explored in prior literature

For each link, allocate time-slot, channel: a (ts_i, c_i) tuple

Interfering links cannot have the same (ts_i, c_j) allocation == node colouring in the interference graph


Recent formulations: routing is a variable too

Other inputs: expected traffic pattern, number of radios

→ Complex formulation, solution

Is the nature of the problem different in FRACTEL?

Spatial Reuse in FRACTEL

O1: the LDN, and the LACNs at each village are independent of one another (i.e. non-interfering)

→ Consider the LDN, and each LACN independently

Allocating (ts_i, c_j) in the LDN The issue of routing

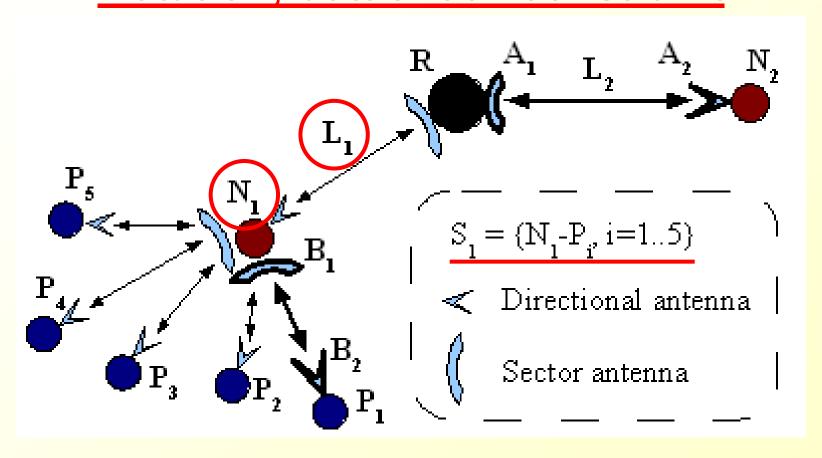
Most traffic is to/from landline

Few multi-path routing opportunities in the LDN

Topology has a natural tree structure

O2: the issue of routing can be ignored during time-slot, channel allocation

Allocating (ts_i, c_j) in the LDN <u>Terminology</u>


- Consider only two-hop LDN trees for now
 - Hop-1 nodes: one-hop from the landline
 - Connected to landline by hop-1 links
 - Hop-2 nodes: two-hops from the landline
 - Connected to hop-1 nodes by hop-2 links
- We need to colour the links
 - With minimum possible number of colours

Allocating (ts_i, c_j) in the LDN <u>Lower bound</u>

All hop-1 links are mutually interfering

- Allocate different colours for each hop-1 link
- Lower bound on number of colours necessary
- Is the same number of colours sufficient?

Allocating (ts_i, c_j) in the LDN Notation, bottleneck constraint

L_i allocated one slot → S_i needs only one slot

Allocating (ts_i, c_j) in the LDN Colouring hop-2 links: illustration

S₁ and L₂ are non-interfering

 \rightarrow S₁ can be given the same colour as L₂

Allocating (ts_i, c_j) in the LDN Bipartite perfect matching

For each S_i, several non-interfering L_i will exist

Bipartite perfect matching:

For each S_i, choose a non-interfering L_j And allocate S_i the same colour as L_i

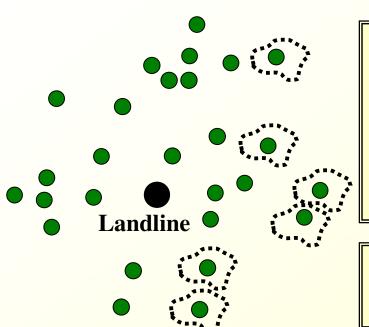
Polynomial algorithms exist for bipartite perfect matching

Allocating (ts_i, c_j) in the LDN Further generalization & open issues

Handling non-uniform traffic demands:

Count traffic requirement in units of *b* Kbps Li has traffic requirement of *k* units

Consider it as k different links
Will work if requirement is not too skewed


Open issues:

Extending the approach to trees of depth 3 Consideration of 2P:

Is 2P possible with sector antennas?

Allocating (ts_i, c_j) in the LACNs

The idea

C = total capacity in one channel of operation

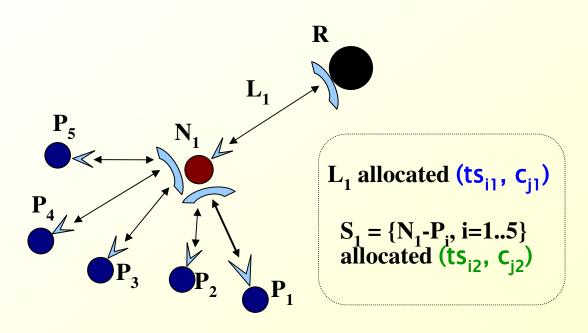
k = number of orthogonal channels

 LG_i = local gateway at $LACN_i$

 C_i = total traffic to/from $LACN_i$, via LG_i

T = total number of LACNs

Uniform traffic requirements $\rightarrow C_i = kC/T$

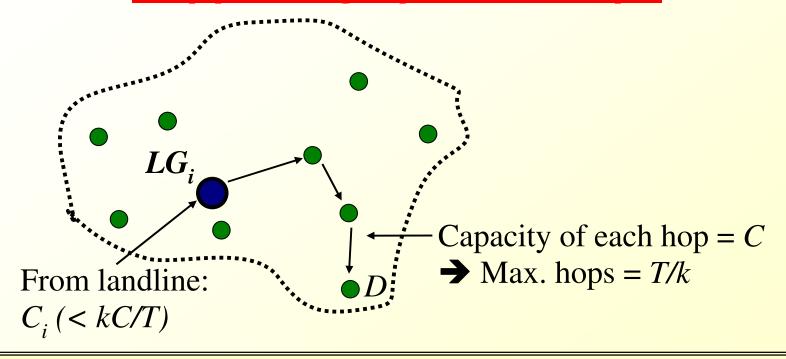

Large T, small $k \rightarrow C_i << C \rightarrow O3$

O3: for each LACN, the long-distance link at its local-gateway is the bottleneck

→ Enough slack for scheduling within each LACN

Allocating (ts_i, c_j) in the LACNs

An independent channel for each LACN



At most <u>two channels</u> for long-distance links at <u>hop-1</u> nodes Only <u>one channel</u> for long-distance link at <u>hop-2</u> nodes

O4: we have at least one channel entirely free for LACN,

Allocating (ts_i, c_j) in the LACNs Supporting up to T/k hops

Time taken for B bytes over h hops = $h \times B/C$

Time taken for B bytes to arrive over the LDN at $LG_i = B/C_i$

- $= T/k \times B/C$
- \rightarrow up to T/k hops can be supported without any spatial reuse

Allocating (ts_i, c_j) in the LACNs <u>Some remarks</u>

- Similar arguments apply for scheduling any mix of uplink/downlink traffic
- Some numbers:
 - Say, T = 30, $k = 3 \rightarrow 30/3 = 10$ hops can be supported!
 - Typical village expanse < 1km
 - Link lengths: few hundred metres
 - → LACN only 3-4 hops in practice
- Challenge: how to do scheduling at a fine granularity (per-packet)?
 - There are other challenges too…

Outline

- FRACTEL problem setting
- Link abstraction in FRACTEL
- TDMA operation in FRACTEL
 - Spatial reuse
 - TDMA in the LDN
 - TDMA in the LACNs
- TDMA implementation challenges
- Conclusion

TDMA Implementation Challenges

- 1. How to achieve time synchronization, in a potentially large network?
- 2. We need dynamic scheduling:
 - In FRACTEL, traffic patterns will be dynamic
 - Only a subset of nodes may be active at a time
- 3. In each LACN, we need fine granularity scheduling, depending on source/destination of packet

Use the hierarchical Use centralized algorithms structure of the for synchronization and network scheduling Strategies to Address the Challenges Use a multi-hop Use fine-granularity

The four strategies fit in well with one another

scheduling in each

LACN

connection-oriented

link layer

Addressing the Challenges (1/3)

Simplifying synchronization:

Recall O4: we have an entire channel of operation for each LACN

→ No need to synchronize LACN_i with LDN, or with LACN_i

Multi-hop connection-oriented link layer:

- How exactly does LG_i know when to schedule for D?
- Use the notion of traffic flows at the MAC/routing layer
 - Similar to 802.16 connections
 - Can be used to categorize traffic: voice, video, ftp/http
 - Categorization helps in scheduling
- Connection state is maintained at LG_i as well as the landline

Addressing the Challenges (2/3)

Multi-hop framing:

- LG_i repeatedly schedules multi-hop downlink/uplink frames
- Note: we have a lot of leeway for framing overheads
 - We estimated T/k hops = 30/3 = 10 hops possible
 - But only 3-4 hops need to be supported in practice

Link-layer ARQ:

- Link abstraction → ~0% error rates
- Hence we can have link-layer ACKs over multiple hops
 - Fits in well with multi-hop framing mechanism and connection-oriented link layer

Addressing the Challenges (3/3)

Centralized scheduling & synchronization:

- *LG_i* handles scheduling, synchronization in *LACN_i*
- Landline handles scheduling, synchronization in the LDN
 - LDN aware of traffic during flow setup
 - Can handle dynamic scheduling

Centralized approach is valid design choice:

- Fault tolerance is not an issue since anyway we have a tree structure
- Scaling is not a concern too, since we have used hierarchy

Open Technical Issues

- What exactly will be the multi-hop framing mechanism?
 - What will be the overheads?
 - Small frames may be needed for lower delay: overheads for small frames?
- How exactly can we schedule each category of traffic?
- How can we achieve multi-hop synchronization using offthe-shelf 802.11 hardware?
 - Current 802.11 hardware supports single-hop synchronization with minimal error (4 micro-sec)
- Dynamic channel/time-slot allocation:
 - We do not want to disrupt a functional network
 - How to achieve dynamic scheduling with minimal disruption?

Conclusion, Wider Applicability

Conclusion:

- FRACTEL: mesh network deployment in rural settings
 - Several properties warrant a specific consideration rather than a generic approach
- Take-away lesson: consideration of deployment specifics will likely change the nature of the problem

Wider applicability:

- Our discussion has been centered around 802.11b/g
 - 802.11a band has been delicensed recently in India
- Our observations also likely apply to 802.16 networks:
 - Network architecture, pattern of spatial reuse
 - Scheduling in the presence of bottleneck links
 - Use of hierarchy, centralized approach