Experiences with WiFi for Rural Internet in India

Bhaskaran Raman Department of CSE, IIT Kanpur

Kameswari Chebrolu Department of EE, IIT Kanpur

Australia-India Broadband and IT Workshop Melbourne, Australia, 10-11 July 2006

- Why WiFi for rural Internet?
- Two projects: Digital Gangetic Plains, Ashwini
- Network planning
- MAC protocols: P2P & P2MP links
- Performance studies on long-distance links
- Power optimization: Wake-on-WLAN

WiFi for Rural Networking

Cost of land-line telephony: \$400 per line --> \$200 per line

400 million lines for India ==> \$80 billion

WiMAX (IEEE 802.16) yet to hit the market Unclear if it will be inexpensive enough for rural areas

In contrast: WiFi equipment *cost-priced* Rs 2-5K per WiFi radio Inexpensive enough for rural deployment

Digital Gangetic Plains

Ashwini

Byrraju
foundation,
Andhra
Pradesh

Video-based
services:
distance education,
tele-health,
agricultural
advice

Channel 6 - 17 nodes to Channel 10 be added

- Why WiFi for rural Internet?
- Two projects: Digital Gangetic Plains, Ashwini
- Network planning
- MAC protocols: P2P & P2MP links
- Performance studies on long-distance links
- Power optimization: Wake-on-WLAN

Network Planning

• WiFi needs line-of-sight for long-distances

• Tower costs are high

Tower/mast height (m)	10	15	21	24	27	30	45
Cost	\$100.00	\$150.00	\$800.00	\$950.00	\$1,100.00	\$1,850.00	\$5,000.00

Implication: Network planning necessary

Aspects of Network Planning

- Goals: minimize cost, adequate throughput
- Inter-dependent parameters:
 - Tower heights
 - Network topology
 - Antenna types
 - Transmit powers

Network Planning: Approach

Further reference: Sayandeep Sen, "Topology Planning for Long Distance Wireless Mesh Networks", Master's thesis, IIT-Kanpur, May 2006.

- Why WiFi for rural Internet?
- Two projects: Digital Gangetic Plains, Ashwini
- Network planning
- MAC protocols: P2P & P2MP links
- Performance studies on long-distance links
- Power optimization: Wake-on-WLAN

MAC Protocol

- 802.11's CSMA/CA unsuitable
 - Timing parameters need to be made larger
 - Arbitrary contention resolution unnecessary
- P2P versus P2MP links

Exposed interface problem within a node: CSMA/CA: only one link operation per node *Problems: (a) Immediate ACK, (2) CS back-off*

Further reference: Bhaskaran Raman and Kameswari Chebrolu, "Design and Evaluation of a new MAC Protocol for Long-Distance 802.11 Mesh Networks", MOBICOM, Aug/Sep 2005.

P2MP Links: SRAWAN

- SRAWAN: Sectorized Rural Access Wide Area Network
 - Simplified WiMAX MAC
 - On 802.11 PHY
 - Single-sector operation
- WiFiRe: multi-sector operation

Further reference: Pavan Kumar, "Design, Implementation, and Evaluation of new MAC Protocols for Long Distance 802.11 Networks", Master's thesis, IIT-Kanpur, May 2006.

- Why WiFi for rural Internet?
- Two projects: Digital Gangetic Plains, Ashwini
- Network planning
- MAC protocols: P2P & P2MP links
- Performance studies on long-distance links
- Power optimization: Wake-on-WLAN

Long-Distance Link Performance: Questions

- What is the effect of received signal strength on packet error rate?
- What is the effect of packet size and transmit rate on packet error rate?
- What is the maximum achievable application throughput?
- What is the effect of interference?

Long-Distance Link Performance: Questions

- What is the effect of weather on link performance?
- Is there time correlation of packet errors? If so, at what granularity?
- What is the effect of MAC ACK timeouts on application throughput?

Conclusion from Performance Study

- Long distance links can be planned well for predictable performance
- Interference can cause drastic reduction in performance
- Beware of bottlenecks other than wireless interface

Further reference: Kameswari Chebrolu, Bhaskaran Raman and Sayandeep Sen, "Long-Distance 802.11b Links: Performance Measurements and Experience", MOBICOM, Aug/Sep 2006. *To Appear.*

- Why WiFi for rural Internet?
- Two projects: Digital Gangetic Plains, Ashwini
- Network planning
- MAC protocols: P2P & P2MP links
- Performance studies on long-distance links
- Power optimization: Wake-on-WLAN

Background & Motivation

Power consumption of Soekris

No Card Present	4.75 W
Card Present, No Transfer	4.89 W
Soekris Receiving	5.31 W
Soekris Transmitting	6.24W

- Overall power consumption dominated by Soekris
- Power can be conserved by
 - Turning off equipment when link idle
 - Turn on equipment when connectivity is desired

Challenge

Multi-hop Configuration

- No support for Wake-on-LAN feature
 - Neither WLAN card nor Soekris support this feature

WAKE-on-WLAN Architecture

- CCA Mode 1:
 - Clear channel when received energy is below threshold
- RSSI.CCA_THR, 1db, default = -77dbm
- FSCTRL.FREQ, 1Mhz, default=2.405MHz

Outdoor Validation

Tx Power (IITK)	Rx Power (Mohanpur)	Soekris State					
Case 1: CCA = -74 dbm							
20 dbm	-62 dbm	Yes					
10 dbm	-72 dbm	Yes					
0 dbm	-84 dbm	No					
-2 dbm	-85 dbm	No					
Case 2: CCA = -90 dbm							
20 dbm	-62 dbm	Yes					
10 dbm	-72 dbm	Yes					
0 dbm	-84 dbm	Yes					
-2 dbm	-85 dbm	Yes					

Further reference: Nilesh Mishra, Kameswari Chebrolu, Bhaskaran Raman and Abhinav Pathak, "Wake-on-WLAN", WWW, May 2006.

Conclusion

- WiFi a potential low-cost technology for rural broadband
- Two projects: DGP, Ashwini
- Various network planning, protocol, performance, power optimization issues addressed
- Several open issues, to be thrashed out with further experience from deployment
- Papers, presentations, reports:

- http://www.cse.iitk.ac.in/users/braman/dgp.html